Area-Wide Integrated Management System (AIMS) for *Diaphorina citri* in Texas, USA

M. Sétamou
+1-956-447-3370
Mamoudou.setamou@tamuk.edu
Outline

1. Development of ACP-AWM program
2. Specific components of Texas ACP-AWM program
3. Outreach & Implementation
4. Achievements
5. Challenges (costs, other pests, residential citrus)
6. Future outlook
7. Discussion
Texas Citrus Industry

✓ Texas citrus industry covers 28,000 acres; in the three southern-most counties of the state (LRGV)
✓ Texas ranks 3rd in citrus production in the U.S.
✓ Two major citrus spp.
 ➢ Grapefruit-70%
 ➢ Sweet oranges-28%
ACP and HLB in Texas

- **2001**: ACP was first reported in Texas
 - No “targeted” psyllid control program, but control of other insect pests provided some benefits
- **2007**: ACP monitoring initiated in sentinel groves
- **2008-2009**: Pilot project for the development of psyllid AWM (supported by APHIS-PPQ)
- **2010**: “Voluntary” grower implementation of AWM
- **2012**: Detection of HLB-intensification of ACP-AWM in quarantine and other mitigation efforts
To reduce ACP populations to very low levels and reduce the risk of CLas transmission and HLB spread

- Implement an aggressive area-wide control of psyllid in all settings where psyllid is found

HLB mitigation and sustainable citrus production are the ultimate goal of the psyllid control that must be integrated to all other strategies in a system approach
Sustainable citrus production in the presence of ACP/HLB: the 4-pronged approach

Inoculum Reduction Elimination

Bacterial titer dynamics

Environment/Grove care practices

Vector Control

HLB Management

Clean Nursery Stock

Plant Health/Other Diseases

Biology/Ecology

Diseases

Environment/Grove care practices

Bacterial titer dynamics
Strategies for HLB Mitigation

- The fight against HLB is an industry-wide effort. **No single grower can successfully combat HLB alone**
- **No single strategy will also be able to provide effective control** - **All approaches must be integrated and implemented together**
 - **Psyllid control** (Avoid spread of pathogens, protection of new planting and non-infected groves)
 - **Clean and certified nursery plants**
 - **Improved tree health** (nutrition and control of other diseases)
 - **Reduction of inoculum** (Where possible—Early detection is key for inoculum reduction)
Strategies for HLB mitigation in Texas

Prior to January 13, 2012:
1. Production of “clean” nurseries plants
2. Vector control
3. Early detection
4. Maintaining good tree health (nutrient, control of other diseases)

Post January 13, 2012:
5. Destruction of inoculum & Aggressive vector control in all commercial groves and residential areas within quarantine
Psyllid control has been the major proactive step we’ve taken for HLB mitigation in Texas.

Sustainable psyllid management strategies need to be designed to fit particular pest ecology and production systems.

The ‘one-size fits all’ approach appears to be unsustainable in psyllid control (e.g. Brazil: 12-24 sprays a year, Florida: 12 sprays, will be hardly adopted by growers in TX).
Development of Psyllid Control Program

- Growers generally spray 3 to 4 times a year, and pest and disease control accounts for 35-50% of production costs.
- Spray decisions are based on mite or scale insect threshold, and psyllid population would not have driven spray decision—at least during active growing season.
- Design a program that is **efficacious** yet **cost-effective** and that could **easily fit into their ongoing programs**.
Effective ACP management requires great understanding of spatial and temporal distribution of ACP population in agro-ecosystems (nurseries vs groves vs residential trees)

Several factors affect ACP population dynamics

- Tree phenology (flush cycle)
- Host plant species and varieties
- Irrigation type
- Tree location
- Time of year
- Other grove care practices (leading to flush shoot production)
Citrus phenology and psyllid population biology in TX

Active growing season, ACP reproduces on Flush shoots

Dormant season

Vegetative

Harvest

Bud Break

Flowering & Fruit Set

Fruit Development

Maturation

Dormant season

Winter

Spring

Summer

Fall

Winter
Variance component analysis of factors affecting ACP dynamics in Texas

<table>
<thead>
<tr>
<th>Variance Component</th>
<th>ACP developmental stage</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eggs</td>
<td>Nymphs</td>
<td>Adults</td>
<td></td>
</tr>
<tr>
<td>Grove Location</td>
<td>0.2</td>
<td>0.15</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>(Proximity to Residential</td>
<td>-</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>areas, outer of block</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>clusters)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variety</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Irrigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>3.1</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>Time (fall)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>76.7</td>
<td>68.2</td>
<td>61.3</td>
<td></td>
</tr>
<tr>
<td>Tree location</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Perimeter vs Adj vs</td>
<td>1.0</td>
<td>4.7</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>Interior)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flush Cycle</td>
<td>20.4</td>
<td>23.35</td>
<td>29.5</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>Total of 53 groves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sampled twice a month</td>
<td>for 24 months</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Strong Edge Effects in ACP Distribution
Densities of ACP mostly determined by new flush shoots
Psyllids are more abundant on perimeter trees in groves (edge effects)
Grove close to residential areas or unmanaged habitats w/ACP host plants are more at risk for ACP infestations
ACP is very mobile, thus the necessity of AWM of psyllid

Consequences for management:
Chemical sprays must target adults during dormant period of just before a new flush cycle
Perimeters sprays between flush cycles
Development of Psyllid Control Program: Local vs Regional Control

✓ Comparison of the efficacy of **regional spray program vs local spray program** (treatment of selected groves)

- **Program 1 (Regional)**: all orchards sprayed in the area
- **Program 2 (local)**: spayed orchards surrounded by unsprayed ones

✓ Spray applications were made 4 times during the year, just before each major flush cycles, the first one as a dormant spray
Development of Psyllid Control Program: Local vs Regional Control

Psyllid overwinters as adults

Psyllid population increases

First Flush
Second Flush
Third Flush
Fourth Flush

= Spray Application

Months
January
February
March
April
May
June
July
August
September
October
November
December
Regional Spray Program

Total = 177 acres
Local Spray Program

Total = 21 acres
Development of Psyllid Control Program: Local vs Regional Control

- Very low ACP pop in regional vs local control
- Dormant spray provided 3-4 months of effective control
Most insecticides provide short residual control, and frequent applications may be required for effective control due to ACP re-infestation.

Coordinated regional spray provided long term control of ACP with fewer sprays because ACP is controlled over a larger area, thus preventing re-infestation.
- the larger the area covered, the better is the control
Development of Psyllid Control Program
Key Concept in ACP and HLB Management

- ACP is not difficult to kill, but is extremely hard to control!!!!!
- Effective control requires coordination between growers and all stakeholders, thus the concept of area-wide management
Psyllid control is implemented as an Area-Wide Integrated Management System (AIMS)

Area-wide psyllid control

- **Coordinated dormant sprays** (goal is to target psyllid overwintering populations)
- **Coordination is difficult** during active growing seasons but psyllid control program must consider other pests and diseases
- Spray applications made just prior to a flush cycle during active growing season on **grove by grove basis** (edge treatment first)
- **Perimeter treatment** to target immigrating psyllids after whole grove treatment and between major flush cycles (assist in dealing with habitats where nothing is done)
Area-wide Integrated Management System (AIMS) for ACP in Texas

- Program is made of **two coordinated and ACP-targeted dormant sprays in fall and winter** (November and January-February)

- **Multi-pest control** approach during active growing season (March-October)

- **AIMS implemented in commercial groves**, but since 2011 a biological control program with *T. radiata* in ongoing in residential areas and abandoned groves (courtesy of APHIS-PPQ)

- **Inoculative biocontrol for other pests** (scale insects, mealybugs, blackfly...)
Psyllid control needs to continue during the growing season specially before or at the beginning of new flush growth.

- Sulfur + Imidacloprid
- Portal + Imidacloprid
- Pyrethroids + Neonicotinoid
- Abamectin + Movento + Fungicide
- Micromite + Agrimek + Centaur
- Envidor + Esteem + Lorsban + Imidacloprid

Suggested Treatment for Mature Groves:

- Dormant Spray
- Whole Spray
- Whole Spray
- Whole Spray
- Whole Spray

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep
Suggested Treatment for pest control in Young plantings

- Foliar sprays as needed (other a. i., miticides, fungicides)
- Soil-drench every 8 weeks (neonicotinoid, systemic)
 - January: Imidacloprid
 - June: Thiamethoxam
 - November: Clothianidin
<table>
<thead>
<tr>
<th>Type of Spray</th>
<th>Timing</th>
<th>Method</th>
<th>Target site</th>
<th>Application method</th>
<th>Recommended insecticides</th>
</tr>
</thead>
</table>
| Fall dormant spray | Early November | Areawide coordinated sprays | Whole orchards | ▪ Aerial
▪ Ground full or reduced volume
▪ Low volume | Danitol, Mustang, Leverage, Baythroid, Malathion, Lorsban, Imidan |
| Winter dormant spray | Mid-Jan to mid-Feb | Areawide coordinated sprays | Whole orchards | ▪ Aerial
▪ Ground full or reduced volume
▪ Low volume | Danitol, Mustang, Leverage, Baythroid, Movento, Provado, Actara |
| Active growing season | Just before major flush cycle (Jun & Sep) | Per grove based on tree phenology and monitoring | Whole orchard | ▪ Ground full or reduced volume | Danitol, Mustang, Leverage, Baythroid, Movento, Provado, Actara, Imidan, Sevin, Lorsban |
| Active growing season | Anytime | Per grove basis and monitoring | ▪ Perimeter sprays | ▪ Ground full or reduced volume | Danitol, Mustang, Leverage, Baythroid, Movento, Provado, Actara, Imidan, Sevin, Lorsban |
Implementation of AIMS for ACP in Texas

- Grower education during meetings held in October, January, and March every year
 - Just before coordinated sprays
- Outreach during growing season (to answer growers’ queries)
- Frequent contacts with growers (SMS to deliver critical messages)
- Psyllid monitoring in groves as service provided to growers free of charge
- Practical recommendation on choice of pesticides (annual maximum limits, PHI, compatibilities, etc...)
Organizational Chart for HLB mitigation

HLB Operation and Planning

TCM, TCPB
TDA, USDA

ACP-AIMS
- Early Detection
- Biological Control
- Outreach & Education
- Science Committee

ACP
- Monitoring
- Treatment Coordination
Implementation of AIMS by Growers

<table>
<thead>
<tr>
<th>Spray Period</th>
<th>Acres sprayed</th>
<th>Percentage</th>
<th>Acreage covered at least once</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 2010</td>
<td>15,413</td>
<td>56.6%</td>
<td>56.6%</td>
</tr>
<tr>
<td>Nov 2010</td>
<td>22,859</td>
<td>84.0%</td>
<td></td>
</tr>
<tr>
<td>Jan 2011</td>
<td>17,614</td>
<td>64.7%</td>
<td>85%</td>
</tr>
<tr>
<td>Nov 2011</td>
<td>16,899</td>
<td>62.1%</td>
<td></td>
</tr>
<tr>
<td>Jan 2012</td>
<td>20,967</td>
<td>80.0%</td>
<td>81%</td>
</tr>
<tr>
<td>Nov 2012</td>
<td>22,700</td>
<td>88.6%</td>
<td></td>
</tr>
<tr>
<td>Jan 2013</td>
<td>21,350</td>
<td>83.3%</td>
<td>87.1%</td>
</tr>
</tbody>
</table>
AIMS ACHIEVEMENTS

- No ACP control
- Field trials/Awareness of ACP/HLB
- Grower participatory trials
- Coordinated dormant sprays
- Grower Implementation of AWM-ACP

No. of ACP adults/trap

No ACP control
Field trials/Awareness of ACP/HLB
Grower participatory trials
Coordinated dormant sprays
Grower Implementation of AWM-ACP

HLB detected
Implementation of AIMS by Growers

- Psyllid AWM program has been largely adopted by growers
- Launched in January 2010, has produced some benefits
- Reduction of ACP populations with time (2010-2012)
- The seemingly rise observed in 2013 is due in part to the change of sampling methods: Only perimeter trees are now sampled
 - That creates a sense of urgency at grower level
Challenges to the Implementation of ACP-AIMS in Texas

✓ Coordinated efforts among growers
 ➢ New concept, thus not always easy to implement

✓ Costs of control
 ➢ ACP control increases production costs

✓ Lack of obvious and immediate “benefits” ($100-$200 more per acre per year)
 ➢ Not a direct pest (disease vector)

✓ Residential citrus, abandoned groves where no management takes place are always source of psyllids
 ➢ Candidates for biocontrol and microbial control
Interface Between Residential Citrus and Commercial Grove

Weslaco, TX.
Interface Between Residential Citrus and Commercial Grove
Interface Between Residential Citrus and Commercial Groves

Edinburg, TX.
Interface between trailer park and grove in Weslaco, TX.
Figure: Trap catches of *D. citri* in residential and commercial citrus located within the same vicinity (in grove mean of 7 traps, and in residential means of 5 traps; traps deployed for 2 weeks)
✓ Adult psyllids are highly mobile

➢ Frequent movement of ACP between different habitats

➢ Mark-release-recapture studies (Fluorescent dust):

Released in Dooryards

- R to R (70.3%)
- R to G (29.7%)

Released in Groves

- G to G (81.2%)
- G to R (18.8%)

Relative Exchange

- R to G (78.6%)
- G to R (21.4%)

Source or Sink?
Residential citrus mostly source of ACP for groves
Challenges to the Implementation of ACP-AIMS in Texas

Problems associated with AWM program

- Resurgence of ‘secondary pests’, mites and sucking pests (mealybugs, scale insects) can be due to AWM.
- Problem is real, but mostly due to the type of insecticides used. Minimize broad spectrum insecticides during active growing season.
 - **Pyrethroids** (Danitol, Baythoid, Mustang) kill many natural enemies leading to sucking pest outbreaks.
 - **OP** (Chlorpyrifos, Dimethoate) and **carbamates** may increase spider mite problems (TCM, CRdM, TSM, SSM).
Challenges to the Implementation of ACP-AIMS in Texas

Problems associated with AWM program

- Broad spectrum pesticides are often cheaper, then growers tend to constantly use them.
- But the cheapest pesticide does not always provide the cheapest pest control in citrus.
- Prudent choice of pesticides (use softer chemicals as much as you can during active growing season)
Challenges to the Implementation of ACP-AIMS in Texas

Drought

- Trees are water stressed, once irrigated they produce profuse flush shoots leading to ACP infestations
- Drought has led to lack of synchrony of flush cycles
- Mild winter, no true dormancy observed, hence psyllid reproduction started earlier than expected
Future outlook of ACP-AIMS in Texas

- Growers must make it their own program: Of the grower, by the grower and for the grower.
- Collaboration between different stakeholders (growers, state and federal agencies)
- Voluntary program, but growers’ participation is necessary for success
- Effort MUST be sustained; not a one time deal!
- ACP and HLB management requires working together
Think more in terms of a system approach while implementing AIMS of psyllid by conducting a multi-pest control (specifically during the active growing season)

- What pest(s) can you flare up with the chemical selected for psyllid control?
- Minimize **secondary pest outbreaks** by wisely selecting your pesticide
Development of a multipest control approach

Ensure good coverage of trees with spray mixes

- Poor spray coverage is generally a problem in citrus pest control
New sprayer head as add-on to airblast sprayer
THANK YOU!

QUESTIONS??