Molecular and Biological Testing Methods: How they work and what they tell us

Samantha Thomas US-ISHI Chair

Global Stewardship and Industry Affairs Lead, Monsanto

Reference Paper from ISF

ISF Viewpoint on Indirect Seed Health Tests

http://www.worldseed.org/cms/medias/file/ PositionPapers/OnSpecificTechnicalSubjects/I ndirect_Seed_Health_Tests_2013.pdf

Background

- Seed Health is often the intersection of quality concerns (for a company) and phytosanitary concerns (for a country)
- For seed companies,
 - Vegetable Seed Consumers EXPECT healthy, disease-free seeds
 - Outbreaks associated with seed borne pathogens can be:
 - Extremely costly
 - Damaging to our reputation
 - Affect reliability of supply
- For countries, they want seeds that will not introduce a pathogen (change country production success)
- Shared Goal: Deliver seeds that enable customers to produce a healthy, vigorous crop (fruits and vegetables)

International Seed Health Initiative

- From the Industry side, there is an established initiative that focuses on the development and validation of seed health methods: ISHI
- Brings seed companies, private laboratories and public sector institutions together to address seed health issues
 - Seed-transmitted diseases that may have an impact on trade and/or crop health
- Currently, 55 active scientists (plant pathologists, molecular biologists)
 NL, US, FR, JP, IL, ES (also KO, TH, PH, CL, IN)
- Represents ~90% of the vegetable seed traded internationally (measured in USD)

Fundamentals of ISHI-Veg

- Seed Health area is considered a NON-COMPETITIVE and non-proprietary
 - Shared data, methods, seed sources, microbial isolates, and experience
 - Shared lessons from SH-related complaints
- All methods are shared on ISF website: <u>http://www.worldseed.org/isf/ishi_vegetable.html</u>
- Methods may also be shared and/or validated and reviewed with other organizations:
 - International Seed Testing Association
 - National Seed Health System of USDA
 - National Plant Protection Organizations

Seed Health Method Types

- Direct Methods (Biological)
 - Result in the recovery and confirmation of a pathogen from a sample
 - Bacterial seed wash with pathogenicity assay
 - Fungal blotter assays (with microscopy)
 - Seedling grow outs
- Indirect Methods (Molecular)
 - Result in a data point that is *correlated* to pathogen presence
 - Bacterial seed wash without pathogenicity assay
 - Direct Seed or Seed-wash PCR
 - ELISA

Observations or Results from Biological and Molecular Methods

Biological

Molecular

Differences in Resources for Method Execution

Drivers	Biological	Molecular
Time (Duration of assay)	Few as 6 days Up to 42 days	1 day-3 days
Resources	Lab equipment; Greenhouse or Growth Chamber space	Lab equipment
Cost	Highly variable (\$50 to \$2000 per sample)	Variable generally more consistent (\$100-200 per sample)
Expertise	High level of expertise on morphology, symptomology (performing and evaluating)	Expertise on GLP (performing)
Conclusions	Pathogen presence confirmed	Pathogen presence assumed

Differences in Resources for Method Execution

Drivers	Biological	Molecular
Time (Duration of assay)	Few as 6 days Up to 42 days	1 day-3 days
Resources	Lab equipment; Greenhouse or Growth Chamber space	Lab equipment
Cost	Highly variable (\$50 to \$2000 per sample)	Variable generally more consistent (\$100-200 per sample)
Expertise	High level of expertise on morphology, symptomology (performing and evaluating)	Expertise on GLP (performing)
Conclusions	Pathogen presence and viability confirmed	Pathogen presence assumed

Methods of the future....

- Companies and Countries are embracing the advantages of molecular testing...
 - Which may also include: Improved Specificity, Improved Repeatability
- New tests may look like this:

• Fixed per assay

Nucleic Acid Extraction

 Variable: Laboratory- or Company-specific methods Analysis

 Fixed per assay (pathogen target)

Why did it take so long to get here?

- PCR has been around for decades
- New methods have a similar flow as compared with trait testing
- Key difference:
 - Seed health involves organisms that are undergoing evolution in real-time (reproductive time is minutes to hours, not years)
 - Genetic mutations → genotypic and phenotypic differences
 - How to ensure detection? Need assays designed based on data from large populations of target pathogen

Genome Sequencing: Public + Monsanto Genomic Data

Xevt-82i contid0003

Xcvt-86i_contig00023

Cevt-10i contia0001

XevT-165i_contig00036

Xcvt-74i_contig00033

yo/ Xanthomonas_vesicatoria_strain_LC162_F1-F0-ATPase_subunit http:// Xanthomonas_vesicatoria_strain_JS683-2_F1-F0-ATPase_subunit http:// Xanthomonas_vesicatoria_strain_ICMP104_F1-F0-ATPase_subunit

Kort-38, contig00023
 Kort-38, contig00023
 Santhromonas gardneri, strain_LD57, F1-F0-ATPase_subunit
 Xanthromonas gardneri, strain_JS750-JF1-F0-ATPase_subunit
 Xanthromonas gardneri, strain_JS749-JF1-F0-ATPase_subunit
 Xanthromonas gardneri, strain_J0715, F1-F0-ATPase_subunit
 Xanthromonas gardneri, strain_J0715, F1-F0-ATPase_subunit
 Xanthromonas gardneri, strain_J0711, F1-0-ATPase_subunit
 Xanthromonas gardneri, strain_J0711, F1-0-ATPase_subunit
 Xanthromonas gardneri, strain_J0712, F1-0-ATPase_subunit
 Xanthromonas gardneri, strain_J0712, F1-0-ATPase_subunit
 Xanthromonas gardneri, strain_J0712, F1-0-ATPase_subunit
 Xanthromonas gardneri, strain_J0711, F1-0-ATPase_subunit

Xanthomonas gardneri strain ICMP121 F1-F0-ATPase subunit Xanthomonas_gardneri_strain_ICMP119_F1-F0-ATPase_subunit Xanthomonas qardneri strain ICMP117 F1-F0-ATPase subunit (anthomonas_gardneri_strain_ICMP111_F1-F0-ATPase_subunit anthomonas_gardneri_strain_IBSBF2373_F1-F0-ATPase_subunit (anthomonas gardneri strain IBSBF1783 F1-F0-ATPase subunit anthomonas gardneri strain IBSBF1782 F1-F0-ATPase subunit Xanthomonas_gardneri_strain_CFBP6822_F1-F0-ATPase_subunit -Xanthomonas_campestris_pv._raphani_strain_CFBP5829_F1-F0-ATPase_subunit -Xanthomonas_campestris_pv._raphani_strain_CFBP5827_F1-F0-ATPase_subunit Xanthomonas campestris pv. raphani strain CFBP5828 F1-F0-ATPase subunit Xanthomonas_euvesicatoria_strain_LMG909_F1-F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_LD128-2_F1-F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_LB226-4_F1-F0-ATPase_subunit Xanthomonas euvesicatoria strain LB216 F1-F0-ATPase subunit Xanthomonas euvesicatoria strain LA88-6 F1-F0-ATPase subunit Xanthomonas euvesicatoria strain LA88-3 F1-F0-ATPase subunit Xanthomonas euvesicatoria strain LA85-1 F1-F0-ATPase subunit Xanthomonas_euvesicatoria_strain_ICMP9086_F1-F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_ICMP185_F1-F0-ATPase_subunit

P. euvesicatoria

P. perforans

P. vesicatoria

P. gardneri

 Xarthomonas_euvesicatoria_strain_CFEP6606_F1-F0-ATPase_subunit Xarthomonas_euvesicatoria_strain_CFEP6613_F1-F0-ATPase_subunit Xcvt-43_contig00050 Xcvt-43_contig00050 Xcvt-132_contig00050 Xcvt-112_contig00051 Xcvt-3_contig00057 Xcvt-3_contig00037 Yort-Xcve-141(_contig00013 Xarthomonas_euvesicatoria_strain_LE84_F1-F0-ATPase_subunit Xarthomonas_euvesicatoria_strain_LE83_2.F1-F0-ATPase_subunit Xarthomonas_euvesicatoria_strain_LE83_2.F1-F0-ATPase_subunit Xarthomonas_euvesicatoria_strain_LE83_2.F1-F0-ATPase_subunit Xarthomonas_euvesicatoria_strain_LE83_2.F1-F0-ATPase_subunit Xarthomonas_euvesicatoria_strain_LE83_2.F1-F0-ATPase_subunit Xarthomonas_euvesicatoria_strain_LE83_2.F1-F0-ATPase_subunit Xarthomonas_euvesicatoria_strain_LE83_2.F1-F0-ATPase_subunit Xarthomonas_euvesicatoria_strain_LE83_E1-F0-ATPase_subunit Xarthomonas_euvesicatoria_strain_LE84_E1-F0-A

Xcvt-89i_contig00016 Xcvt-127i_contig00032 XcvT-110i_contig00045 00414

Xcvb-27i_contig00414 72i contig00031

Xerthomones_perforens_strein_LB101_21_FF6A_TPees_subunt Xenthomones_perforens_strein_LB102_21_FF6A_TPees_subunt Xenthomones_perforens_strein_LB103_27_FF6A_TPees_subunt Xenthomones_perforens_strein_LB273_2_FF6A_TPees_subunt Xenthomones_perforens_strein_LB273_4_FF6A_TPees_subunt Xenthomo

Xcvt-87i_contig00039 Xanthomonas_euvesicatoria_strain_CFBP5597_F1-F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_CFBP6805_F1-F0-ATPase_subunit

Xanthomonas_euvesicatoria_strain_ICMP162_F1.F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_LGMP603_F1.F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_LA84.2_F1.F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_LA88.5_F1.F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_LB216-1_F1.F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_LB216-1_F1.F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_LB216-1_F1.F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_LB216-1_F1.F0-ATPase_subunit

> XcvP-200i_contig00041 -XcvP-113i_contig00010 -Xcvp-21i_contig00045 -Xcvp-6i_contig00166 -Xcvt-126i_contig00020 Xcvt-68i_contig00055

Xcvt-84i_contig00019 Xanthomonas_euvesicatoria_strain_CFBP3268_F1-F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_CFBP5618_F1-F0-ATPase_subun

Xanthomonas_euvesicatoria_strain_CFBP5618_F1-F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_CFBP5617_F1-F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_ICMP5051_F1-F0-ATPase_subunit

> Xanthomonas_euvesicatoria_strain_UM6_F1-F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_LA88-1_F1-F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_LB80-4_F1-F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_LB23-1_F1-F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_LB23-1_F1-F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_LB23-1_F1-F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_LB23-1_F1-F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_LB0914_F1-F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_LM0910_F1-F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_LM0910_F1-F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_LM0914_F1-F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_LM0914_F1-F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_LM0914_F1-F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_LM0914_F1-F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_LM0914_F1-F0-ATPase_subunit Xanthomonas_euvesicatoria_strain_LM0914_F1-F0-ATPase_subunit

> > Xcvt-48i_contig00041 Xcvt-57i contig00048

> > > Xovt-60i_contig00053

Xcvt-66i_contig00096/ / Xcvt-76i_contig00011/

Xcvt-80i_contig00026

XcvP-152i_contig0005

PCR assay development

- Need broad populations
 - ISHI companies
 - Academic Collaborators
 - Public collections and databases
- Need to have a robust process for evaluating newly designed primers
 - Applied to culture collections
 - Applied to routine seed samples (target and non-target isolates, seed washes, plate washes, etc.)
 - Within ISHI, we select primers based on performance
 - Zero percent false negatives
 - Minimal false positives
 - Constant monitoring of assay performance leads to frequent improvements

Final Thoughts

- Molecular methods have advantages over biological methods in speed, resources, technical expertise
 - BUT they do not CONFIRM pathogen presence
 - At best they INDICATE
- Biological methods are still needed to confirm the indicators of molecular tests
- Preferred approach:
 - Start with molecular methods as a screen
 - If results do not indicate pathogen presence, release seed for use
 - If results indicate a possible detect, follow up with biological method
 - Generally, pathogen detects on seed are not common (less than 1%) therefore most samples can be released quickly

Thanks for your time

Questions???