International Perspectives on HLB and ACP Research

J. V. da Graca

Texas A&M University-Kingsville (with contributions from M. Setamou, A. Chow, D. Flores, E. S. Louzada, M. Kunta, E. Mirkov, J. Grosser, A. Jernigan, S. P. van Vuuren)

HLB/ACP – Complex Interactions

- Hosts Citrus and other Rutaceae
- Pathogens-3 spp. of bacteria (+Phytoplasmas)
- Vectors 2 species (+ 2 more?)
- Environments weather, nutrition, soil, other pathogens

Research Overview

- Early Detection
- Antibiotics
- Psyllid research
- Interaction with Phytophthora
- Nutrition
- Resistance/Tolerance

Early Detection

Conventional PCR with primers A2/J5. None of the samples that showed border line Ct showed amplicon.

Early detection of *Candidatus* Liberibacter asiaticus using root samples of 'Valencia' sweet orange on sour orange rootstock

Leaf sample:

- 1. Leaf disease symptom Depend on Environmental and Host factors
- 2. Uneven distribution in canopy and variation of symptomology
- 3. Expertise is needed to differentiate disease symptom from stress

Root sample:

- 1. Fibrous roots will serve as a better diagnostic sample compared to the leaves for early detection of Las in citrus trees From trees without symptomatic leaves
- 2. Fibrous root samples collected near the tree trunk produced consistent and better detection of Las compared to the roots collected farther
- 3. In Texas, HLBfpr qPCR produced unreliable results with root sample
- 4. We suggest that roots are the primary place for Las colonization of the citrus plants regardless the fact that the psyllid inoculates the bacterium in the leaves
- 5. Most probably, Las moves to the roots through the vascular tissue where it finds a more stable environment to multiply and reach enough population to move to the canopy or part of the canopy when conditions are favorable. The same way if conditions in the canopy are not favorable, the roots may function as reservoir for the bacterium
- 6. More uniform Las distribution compared to canopy

VOC Sensor: EZKnowz[™] hardware (UC Davis/ EZDx)

■EZKnowz[™] combines:
■Sampling system
■Gas chromatography
■Differential ion mobility
■Add algorithm and data analysis on-board

Battery and/or solar powered.10 minute now, goal 1 min

Differential mobility spectrometry (DMS) (UC Davis/ EZDx)

- "Sniffer" sensitive to below ppb levels
- Robust and reagentless
- Software upgrades for new applications
- Compact and portable
- Low cost-of-ownership
- Minimal maintenance

Antibiotics?

- 1970s-1980s – South Africa; trunk injection with tetracycline hydrochloride or PMT.

Phytotoxicity; reduced but did not cure trees; labor intensive

 2000s – Univ.Florida. Renewed interest with streptomycin. Soil and trunk applications in pot trials

Research on Psyllid control

- AWM / Perimeter Sprays
- Biological control
- NuPsyllid project

Impact of AIMS on ACP Densities

Pathogenic fungus: Isaria fumosorosea (Ifr)

Kills psyllids within 4 days

Infected Asian citrus psyllids from trials

Tamarixia radiata

Modified mosquitoes for malaria control

NuPsyllid Project (Multi-lab; Multi-state)

- Develop, mass rear and release psyllid which are unable to transmit HLB
- Different approaches including:
 - Using viruses
 - Wolbachia
 - ScFv (fusion protein) transmission blocking

Psyllids, Las and Hosts

 Univ.Florida – psyllid ability to acquire Las is host dependent (70% acquisition from Rough lemon, 40% from lime and orange; <5% from grapefruit)

(Stelinski lab, Lake Alfred – Citrus Industry magazine)

Phytophthora and HLB

- Dr Jim Graham (UFL):
- Stress tolerance in HLB affected trees significantly reduced by Phytophthora infection of roots (loss of fibrous roots). Trees with HLB had up to 40% less fibrous roots than HLB negative trees

Maury Boyd

Photo: Julian Sauls

Maury Boyd (L); Neighbor (R)(J.Sauls)

The influence of the rootstock on greening fruit symptoms

S P VAN VUUREN and J N MOLL Circus and Subiropical Fruit Research Deritate, Nelsonal

Key Words: Greening, rootstocks

Abstract

Introduction

rootstock cultivars were.

The percentage greening fruit symptoms were assessed in orchards with different scient and rootanick combittations in the same block.

No difference occurred where two teion selections were used on the samemotinek.

Significant differences were found where different rootstock cultivary were used with the same scion. The highest percentage greening occurred where Postenio mitoliata was used as a montack. The mason for the higher precoing infection is still unexplained. but it is possible that it has an influence. on the fluid rfisthm of a true P. woodata has a dwarfing effect on scions and, because of this characteristic, may cound the flushing period. The growing vector, breeding and feeding on young growth, will have an extended period of feeding on such trees and therefore transmit the greening agent more

No differences occurred where four P. mifolione selections were compared in montocks.

Uittreksel

DIE INVLOED VAN DIE ONDERSTAM OP VERGROENING VEUGSEMPTOME

Die persentasie vergroening vrugsimptome is bepaal in boorde waar verskillende bo- en onderstamme gebruik is in dieselfde blok.

Gren verskille het voorgekom waar twee bo-statt selekses op dieselfde onderstam gebruik is nie. Betekenisvolle verskille het voorgekom waar 'n bo-stam seleksie op verskillende onderstam-cultivars gebruik is. Die hoogste persentasie vergröening het voorgekom waar Ponchu mbilian in understam gebrulk is. Die rede vir die hoër ventroening beametting is nog onverklaarbaar maar dit is moontlik dat die understam 'n invloed het op die ont-wikkeling van nowe groei. P. mjollate het 'n verdwergende invloed op die hostam en, as gevolg van die eienskap, mig dit die periode waar move groei ontwikkal verleng. Die vergroeningsvektor, wat op jong groei voed en teel, sal data 'n verlengde periode hê om op sulke home te voed en daarom die vergroeningsorganisme moor dikwels nordra. Geen sensable het voorgekum waar

vier P. triftidiata selekties as onderstant sergelyk is nie.

to be a rootatock-scion disease. Marloth (1950) did not find differences in the McClean and Schwarz (1970) found occurrence of greening in owest orange that all commercial citrus ealtiwars in on rough lemon and owest orange root-South Africa are susceptible to growing stocks. This paper provides evidence although certain outswars and selecthat the noststock cultivar influences tions are more tolerant. They also the occurrence of greening fruit sympfound that rootstock cultivary such as tums in the scion. rough lemms, Trever circange and Poncino mfoliata are susceptible.

Procedure

Chrenta, et. el. (1982) compared the A. Comparison of two scion selections susceptibility of various rough lemon Twenty mess such of Hoostar old selections and other routstock cultivars Nauda Valencia and Ofinda Valencia to greening disease in the Philippines. were used. Both scion selections were While five rough lemon selections were mocellar sources and were planted alterfound to be tolerant none of the other natively in the same orchand on Empress mandarin rootstock. All the Gonzales, et. al, (1972) reported int fruit at harvest were grouped in the the resistance or tolerance of 110 citrus categories of marketable and ground fruit according to external fruit symptioned that greening is not considered DOTTE:

Table L. The occurrence of greening thrit symptoms or two event orange selections on the same memories.

Tabel 1. Die voorkoms van vergroening rrugsimptume op twee soetlensoes seleksies op dieselfde onderstam

Sciut/Bostum	Roomick/Ordensian	% Greening/% Vergroenin	
Naside Valencia	Emproys mandacio/mandacys	44,2*	
Olindu Valencia	Empresa mandarin/mandarys	36.9	

*Differences not maturically significant

Verskille nie manuties beackenterof nie

cultivare to greening distance and men-

Table 2. Greening fruit-symptoms in a sweet unarge selection with different citrus. cultivary as methically.

Tabel 2. Vergroening wag-simptome op 'n soeflemoen seleksie met verskillende sitras cultivars as understammy

Rootstock/Onderstam	Scion/Hostam	% Greening/% Vergroening
Orchant L/Boont 1 Empress mandarin/mandaryn Troyer simmige P. wyodana Oschaod 2 /Operad 2	Naude Valencia Naude Valencia Naude Valencia	44.2 ±* 49,8 ± 81,8 ±
Empress mandarits/mandaryn P. trifoliani	Naude Valencia Naude Valencia	9.5 a 41,1 b

*Percentages followed by the same letter do not differ statistically.

Persentation giving met dieselfde letter versitif nie statisties van mekoar nie.

Table 3. Percentage greening fruit symptoms in sweet urange with different Postcirus. trificitata selections as mototocky.

Tabel 3. Die persentasie vergroening in vragte van saetlemoen op verskillende Poseiran trifiniata seleksies as odderstamme

P. trifoñura selection/seleksie	Schin/Bostam	% Growning/% Vergroening
English Kryder Christian Beneka	Nasade Valencia Nasade Valencia Olinda Valencia Olinda Valencia	41,4 ±* 90,3 ± 46,3 ± 59,7 ±
*Differences not statistically in Verskille nie statistics beteker	pufficient www.aine	continued on page 10

Physicilla and instances in a lower at

Manufacture I amount

Florida Rootstock Findings

- Some rootstocks appear to allow trees to remain productive after infection:
- Simple and complex hybrids (USDA)
- Complex hybrids (UF)

HLB tolerance from new rootstocks?

Vernia/Orange #4 Vernia/Orange #19 New photos of trees PCR+ since last September – St. Helena Photo from Dr Jude Grosser, UFL

68-1G-26-F2-P12	10	0	2	20%
68-1G-26-F4-P2	12	1	2	17%
68-1G-26-F4-P6	13	0	0	0%
68-1G-26-F6-P20	17	0	3	18%
69-LTX-AM-F14 P37	4	0	2	50%
Aqua 1803	19	3	5	26%
CLEO	16	0	4	25%
FG 1702*	2	0	0	0%
FG 1707	3	0	1	33%
FG 1709	4	0	0	0%
FG 1712	1	1	1	100%
FG 1714	1	1	1	100%
FG 1715*	1	0	0	0%
FG 1722	1	0	1	100%
FG 1731	5	0	1	20%
FG 1733	5	1	1	20%
FG 1792*	2	0	0	0%
FG 1793	5	1	2	40%
FG 1794*	2	0	0	0%
Kuharske	63	24	58	92%
MG11	40	1	5	13%
Orange 1804	18	3	7	39%
Pink 1802	18	3	4	22%
Rough Lemon	18	3	10	56%
Swingle	20	6	14	70%
Volk	20	7	17	85%
White 1801	11	1	5	45%
White 1805	19	1	4	21%
Yellow 1800	<u>11</u>	<u>1</u>	<u>2</u>	<u>18%</u>
Total	305	58	152	50%

USDA ARS FL Rootstocks

- Sweet orange on 15 rootstocks infected with HLB:
- No resistance , but some tolerance in trees on US-897, US-802.
- US-897 seedlings symptomless (PCR +).

Chimeras on Valencias South Africa (SP van Vuuren)

S.P.van Vuuren

Greening resistant (?) Valencia – 2013 S.P.van Vuuren

Trioza leaf damage

Greening inoculation test on 'Rio Red' Grapefruit

Non-Transgenic Buds grafted on infected rootstock SD Transgenic Buds grafted on infected rootstock (Photo-E.Mirkov)

Transgenic Varieties with Spinach Defensins (SoD2, SoD7—Gen 2-4 Plants)

<u>Varieties</u>

'Frost Eureka' Lemon 'Frost Lisbon' Lemon 'Limoneria 8A' Lemon

- 'Rio Red' Grapefruit
- **'Ruby Red' Grapefruit**
- **'Hamlin' Sweet Orange**
- **'Marrs' Sweet Orange**
- **'Rhode Red' Valencia**

- <u>Rootstocks</u>
 - 'Carrizo'
 - **'C22'**
 - **'Flying Dragon'**
 - 'Swingle'

Psyllid House Screening: Generation 2, 3 and 4 SoD2 or/and SoD7, with or w/o Signal Peptide –

(E.Mirkov)

Psyllid House Challenges of Transgenic Citrus SoD2 & SoD7 Lines

Disease Immunity

Generation 3 ~1 Year in Psyllid House

Fourth Sampling; 5 months later—Still have 5 immune lines!

Photo- E.Mirkov

Grapefruit Plants Challenged with Pathogens – E.Louzada

Regulatory – EPA+USDA+FDA

Study	Cost (\$1000's)	Study	Cost (\$1000's)
Recombinant protein production	300	Thermolability + in-vitro digestibility	100
Antibody production	100	42-day broiler	150
ELISA method development	100	90-day rat feeding (full tox profile)	275
ELISA Validation	125	90-day rat feeding - China (full tox profile)	75
Western method development	50	Human health risk assessment	50
Composition/Expression/ Agronomcs	500	Protein equivalency – recombinant v. plant- made	75
Southern blot	100	Non-target organisms and ecotoxicology	200
Sequencing	125	Honeybee toxicity	30
Within generation analysis	100	Non-target risk assessment	50
Efficacy	200	Product characterization (gene description.	25
Inheritance	50	transformation, etc.)	
Acute oral mouse	100	Event PCR method	200
Aa homology search	50	Certified ref. materials (EU)	115
Toxin homology search	50	Total	3295

Concluding Remarks

- Some progress on earlier detection
- Better sustainable ACP management for shortmedium term.
- NuPsyllid ? (medium-long term)
- Management of tree health (Phytophthora, nutrition)(immediate)
- Resistance/ Tolerance must be long term goals (natural or transgenic)