

# NAPPO Standards for Phytosanitary Measures (RSPM)

RSPM 21 A Harmonized Procedure for Morphologically Distinguishing Teliospores of Karnal Bunt from Ryegrass Bunt, Rice Smut and Similar Smuts

The Secretariat of the North American Plant Protection Organization 1431 Merivale Road, 3<sup>rd</sup> Floor, Room 140 Ottawa K1A 0Y9 Canada 2014

Publication history: This is not an official part of the standard.

Approved: October 17, 1999 Revised: August 10, 2009 Review initiated: 18-11-2013– updated editorial formatting (RLee) Revision by Expert Group initiated: 29-01-2014; finalized 02-10-2014 Submitted to Working Group and Executive Committee: 20-10-2014

### Contents

## Page

| Review                                                   | 4 |
|----------------------------------------------------------|---|
| Approval                                                 | 4 |
| Implementation                                           | 4 |
| Amendment Record                                         | 4 |
| Distribution                                             | 4 |
| Introduction                                             | 5 |
| Scope                                                    | 5 |
| References                                               | 5 |
| Definitions                                              | 6 |
| Background                                               | 6 |
| Outline of Requirements                                  | 6 |
| General Requirements                                     | 7 |
| 1. Role of Identifier and Complexities of Identification | 7 |
| 2. Sample Preparation                                    | 7 |
| 3. Diagnostic Principles                                 | 7 |
| 4. Evaluation of Information                             | 9 |
| 5. Diagnostic Support                                    | 9 |
| Appendix 11                                              | C |

#### Review

NAPPO Standards for Phytosanitary Measures are subject to periodic review and amendment. The next review date for this NAPPO Standard is 2019. This Standard was last reviewed in 2014. A review of any NAPPO Standard may be initiated at any time upon the request of a NAPPO member country.

#### Approval

This Standard was approved by the North American Plant Protection Organization (NAPPO) Executive Committee on October 17, 1999. The current revision was approved on October 20, 2014, and is effective from this date.

#### Approved and signed by:

Grea Wolff Rebecca **Executive Committee Member Executive Committee Member** Canada United States Javier Truiillo Arriaga Executive Committee Member Mexico

#### Implementation

See the attached Implementation Plans for implementation dates in each NAPPO country.

#### Amendment Record

Amendments to this Standard will be dated and filed with the NAPPO Secretariat.

#### Distribution

This standard is distributed by the NAPPO Secretariat, to the Industry Advisory Group and Sustaining Associate Members, the International Plant Protection Convention (IPPC) Secretariat, and to other Regional Plant Protection Organizations (RPPOs).

### Introduction

## Scope

This standard describes the recommended procedures that NAPPO member countries should follow to morphologically distinguish teliospores of *Tilletia indica* (Karnal bunt), *Tilletia walkeri* (ryegrass bunt) and *Tilletia horrida* (rice smut) and several similar smuts.

## References

Ainsworth, G.C. 1965. *Tilletia barclayana*, C.M.I. Desc.No. 75. [In this standard, *T. horrida* is the name used for the rice bunt fungus.]

Carris, L.M., L.A. Castlebury, and B.J. Goates. 2006. Nonsystemic bunt fungi – *Tilletia indica* and *T. horrida*: A review of history, systematics, and biology. Ann. Rev. Phytopath. 44: 113-133.

Carris, L.M., L.A. Castlebury, and J. Zale. 2008. First report of *Tilletia pulcherrima* bunt on switchgrass (*Paniscum virgatum* L.) in Texas. Plant Disease 92:1707.

Castlebury, L.A. 1998. Morphological characterization of *Tilletia indica* and similar fungi. In: Bunts and Smuts of wheat: An International Symposium, p. 97-105. V.S. Malik and D.E Mathre (eds.).

Castlebury, L.A. and L.M. Carris. 1999. *Tilletia walkeri*, a new species on *Lolium multiflorum* and *L. perenne*. Mycologia 91:121-131.

Castlebury, L.A. and D.F. Farr.2002. The Genus *Tilletia* in the United States, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved November 24, 2008, from <u>http://nt.ars-grin.gov/taxadescriptions/tilletia/</u>

Duran, R. 1987. Ustilaginales of Mexico, Washington State University Press.

ISPM 5. (Updated annually). Glossary of phytosanitary terms. Rome, IPPC, FAO.

ISPM 27, Annex 4. 2014. DP 4: *Tilletia indica* Mitra. Rome, IPPC, FAO.

Khanna A. and M.M. Payak. 1968. Teliospore morphology of some smut fungi. II. Light microscopy,. Mycologia 60: 655-662.

Levy, L., R.J. Meyer, L. Carris, G. Peterson, and A.T.Tschanz. 1998. Differentiation of *Tilletia indica* from the undescribed *Tilletia* species on ryegrass by ITS sequence differences. In Proceedings of the 12th biennial Workshop on Smut Fungi, p.29.

Matsumoto, T. and T. Bell. (eds). 1989. Laboratory guide for the identification of smut fungi of quarantine significance to California. California Departament of Food and Agriculture. Division of Plant Industry Analysis and Identification Branch. Sacramento, California

Peterson, G.L., M.R. Bonde, and J.G. Phyllips. 2000. Size-selective sieving for detecting teliospores of *Tilletia indica* in wheat seed samples. Plant Disease 84:999-1007.

Pimental, G., L.M. Carris, L. Levy, and R.J. Meyer. 1998. Genetic variability among isolates of *Tilletia barclayana*, *T. indica* and allied species. Mycologia 90:1017-1027.

RSPM 5. (Updated annually). NAPPO glossary of phytosanitary terms. Ottawa, NAPPO.

Waller, J.M. and J.E. Mordue. 1983. *Tilletia indica*. C.M.I. Desc. No. 748.

### Definitions

Definitions of phytosanitary terms used in this standard can be found in NAPPO RSPM 5 and in ISPM 5.

### Background

Karnal bunt (*Tilletia indica*), rice smut (*Tilletia horrida*) and ryegrass bunt (*Tilletia walkeri*) are morphologically similar. They can usually be distinguished on the basis of host preference whenever bunted seeds are found. However, if low levels of spores are found in seed washes, the probability of misidentification increases. In a seed wash situation, it cannot always be assumed that the main host and the source of the spores are identical. Therefore this standard provides guidance on morphologically distinguishing teliospores of *T. indica, T. horrida, T. walkeri* as well as teliospores of other *Tilletia* spp. that might be encountered as contaminants in seed washes.

Since the approval of this NAPPO standard, an international diagnostic protocol was approved for *Tilletia indica* (ISPM 27, Annex 04: 2014). The NAPPO Expert Group on Grains compared the two documents and found that the NAPPO standard covered some aspects not included in the international protocol and which were deemed sufficiently relevant so as to recommend keeping and updating the NAPPO standard. The NAPPO standard includes diagnostic details of *T. pulcherrima* and *T. barclayana*, species morphologically similar to *T. indica*, but not mentioned in ISPM 27, Annex 04.

Additionally, the international standard offered refinements to the morphological descriptions of *T. indica, T. horrida*, and *T. walkeri*. Accordingly, these refinements were included in the table found in section 3, Diagnostic Principals, of the NAPPO standard.

#### **Outline of Requirements**

This standard addresses the role of identifier and complexities of identification, sample preparation, diagnostic principles and diagnostic support as they relate to morphologically distinguishing teliospores of all bunts and smuts contained in this standard.

### **General Requirements**

### 1. Role of Identifier and Complexities of Identification

The identifier must be an experienced mycologist who understands the complexity and subtleties of microscopic identifications. Since these fungi have confused experienced mycologists who have considerable expertise with the smut fungi, it should never be presumed that there is a simple formula to follow that will guarantee success. It must be recognized that an experienced mycologist is trained to note subtle differences and details and to focus on features that provide reliable characteristics of distinction. The identifier must know how to prepare a microscope slide.

The identifier must be capable of recognizing *Tilletia* spores in the *indica-horrida-walkeri* complex. Depending on the level of experience, there are a number of fungal spores and other artifacts that can be confounding and challenge the very best mycologists. However, this standard makes the assumption that the basic recognition of a *Tilletia* spore is within the competency of the identifier and that only appropriate spores are included in the diagnostic endeavour.

The fewer the spores present, the more difficult the identification. It should be possible to make a good identification on the basis of 10 clearly seen spores. In practice, the diagnostician often will have access to only one or several spores.

The identifier must also understand the complexities that help form an opinion on the identification of an organism. In addition to morphological data, information on the presumed host and geographic origin is also very important. However, it cannot be automatically assumed that the product the spore is found on is also the host of origin. Spores in a grain lot may be derived from weeds or other contaminants or may be introduced as cross contaminants from another lot during shipping or processing. A comparison of the geographical origin of the shipment with the known geographical distribution range of each fungus may be very helpful in narrowing down the diagnostic options if the information on sample origin is reliable.

#### 2. Sample Preparation

Preparing the sample is a simple procedure, but like all aspects of science, it has its subtleties in producing a clear observation of the object in question. A seed wash, most likely the size selective sieve method developed by Peterson et al. 2000 or some other process must be utilized to produce a microscope slide on which a spore or several spores are clearly visible and not obstructed by debris.

### 3. Diagnostic Principles

Some "guiding diagnostic principles" have been established to aid the identification process and distinguish these fungi from one another. These are:

3.1 Characteristic teliospores in excess of 36 microns in diameter are most likely *T. indica*.

3.2. Characteristic mature (colored) teliospores less than 22 microns in diameter are  $_{\mbox{RSPM 21}}$ 

probably neither *T. indica* nor *T. walkeri*. They could be *T. horrida* or another related grass pathogen.

- 3.3. Characteristic teliospores associated with wheat from an area known to be infected with *T. indica* should be presumed to be *T. indica* unless there is clear evidence to the contrary.
- 3.4. Characteristic teliospores from locations where ryegrass is produced or known to intermingle with wheat production and which tend to be 28.8-34.8 microns in diameter, which are translucent brown and very spherical in shape, which have blunt spines in median focus and which appear to form blunt ridges on the exospore and which have visible gaps between the spiny ridges can safely be called *T. walkeri*, even when the primary commodity is wheat. The presence of ryegrass seed as a contaminant in a sample will further increase the possibility that *T. walkeri* may be present.
- 3.5. Teliospores less than 36 microns in diameter with distinctly curved spines have a high probability of being *Tilletia horrida*.
- 3.6. Teliospores that are opaque black, which do not transmit light, are probably either *T. indica* or *T. horrida. T. walkeri* is never opaque black. Teliospores of all three species can be translucent and appear brown.

| Diagnostic          | T. indica*                                                                                                                                                                                                                                                                           | T. horrida*                     | T. walkeri*                                                                                                                                                                                       | Τ.                                                                                  | Т.                                                                 |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Feature             |                                                                                                                                                                                                                                                                                      |                                 |                                                                                                                                                                                                   | pulcherrima                                                                         | barclayana                                                         |
| Diameter size in um | 22-64                                                                                                                                                                                                                                                                                | 14-36,<25 if mature             | 28-35                                                                                                                                                                                             | 17-30                                                                               | 18-35                                                              |
| Color               | Pale orange<br>brown to dark<br>Reddish brown,<br>Mature spores<br>black to opaque                                                                                                                                                                                                   | Light to dark brown             | Pale yellow to dark<br>reddish brown                                                                                                                                                              | dark reddish<br>brown                                                               | Reddish<br>brown to<br>subopaque                                   |
| Shape               | globose to<br>subglobose                                                                                                                                                                                                                                                             | globose to subglobose           | globose                                                                                                                                                                                           | globose                                                                             | globose to<br>subglobose                                           |
| Ornamentation       | Teliospore<br>spines 1.4–5(up<br>to 7) µm.<br>In surface view,<br>densely<br>echinulate or as<br>Closely spaced,<br>narrow ridges<br>(finely<br>cerebriform).<br>In median view,<br>smoother, more<br>complete outline<br>due to spines<br>being densely<br>arranged<br>occasionally | Teliospore spines 1.5–<br>4 μm. | Teliospore spines 3–6<br>µm.<br>Coarse +/–<br>cerebriform.<br>Wide incompletely<br>cerebriform ridges in<br>surface view.<br>In median view, profile<br>is irregular with gaps<br>between spines. | Teliospore<br>spines blunt,<br>1-1.8 µm<br>long, encased<br>in a hyaline<br>sheath. | Teliospore<br>spines 1.5-5<br>µm long<br>Warts dense,<br>truncate. |

Pertinent diagnostic details of similar species are summarized in the Table below:

#### RSPM 21

A Harmonized Procedure for Morphologically Distinguishing Teliospores of Karnal Bunt, Ryegrass Bunt, Rice Bunt and Similar Smuts

|              | with curved tips. |                  |                    |             |            |
|--------------|-------------------|------------------|--------------------|-------------|------------|
|              |                   |                  |                    |             |            |
| Primary host | Triticum spp.     | <i>Oryza</i> spp | Lolium perenne and | Panicumspp. | Pennisetum |
|              |                   |                  | Lolium multiflorum |             | spp.       |

\*Figures here are taken from ISPM 27, Annex 4 (2014) DP 4: *Tilletia indica* Mitra.

#### 4. Evaluation of Information

Using the information from the previous items, the identifier and regulatory officials should be able to identity a spore or a group of spores. It should satisfy a combination of an appropriate morphological match of features with a direct or indirect association of a suitable host and come from an area where Karnal bunt is present or is likely to occur as determined on the basis of pest risk analysis. Whenever a deviation from this combination occurs, further investigation, trace-backs, sampling, analysis and verification of information may be necessary to confirm the identification.

#### 5. Diagnostic Support

NAPPO countries have access to the following individuals who can provide diagnostic advice or will direct inquires with their country to appropriate individuals. These include but are not limited to the following scientists (in alphabetical order):

Stephan C. Briere, M.Sc., Canadian Food Inspection Agency, Ottawa, Canada - Stephan. Briere@inspection.gc.ca

Dr. Lori Carris, Washington State Univ., Pullman, WA - carris@mail.wsu.edu Dr. Lisa Castlebury, USDA-ARS, Beltsville, MD - Lisa.Castlebury@ars.usda.gov Dr. Guillermo Fuentes-Davila, INIFAP-CIRNO, Mexico guillermofuentes\_davila@hotmail.com Dr. John McKemy USDA-APHIS, Beltsville, MD - John.McKemy@aphis.usda.gov Ing. Antonio Carcamo, SAGARPA, Mexico City, Mexico –

antonio.carcamo@senasica.gob.mx

### Appendix 1

Pictures of teliospores of Karnal bunt, ryegrass bunt, rice smut and similar smuts

#### barclayana





#### Tilletia barclayana, surface view. Photo by Lori Carris.

#### horrida





#### indica





### pulcherrima





#### walkeri





Tilletia walkeri, surface view. Photo by Lisa Castlebury

### Tilletia indica



### Tilletia barclayana

