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Estimating Consignment-Level Infestation Rates from the
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ABSTRACT: Introduction of pests and diseases through trade is one of the main socioe-
cological challenges worldwide. Targeted sampling at border security can efficiently provide
information about biosecurity threats and also reduce pest entry risk. Prioritizing sampling ef-
fort requires knowing which pathways are most infested. However, border security inspection
data are often right-censored, as inspection agencies often only report that a consignment has
failed inspection (i.e., there was at least one unit infested), not how many infested units were
found. A method has been proposed to estimate the mean infestation rate of a pathway from
such right-censored data (Chen et al.). Using simulations and case study data from imported
germplasm consignments inspected at the border, we show that the proposed method results
in negatively biased estimates of the pathway infestation rate when the inspection data ex-
hibit overdispersion (i.e., varying infestation rates among different consignments of the same
pathway). The case study data also show that overdispersion is prevalent in real data sets. We
demonstrate that the method proposed by Chen et al. recovers the median infestation rate
of the pathway, rather than its mean. Therefore, it underpredicts the infestation rate when
the data are overdispersed (in right-skewed distributions, the mean is above the median). To
allow better monitoring and optimizing sampling effort at the border, we recommend that
border protection agencies report all the data (the number of infested units found together
with the sample size of the inspection) instead of only that the consignment failed inspection.

KEY WORDS: Biosecurity inspection; live plant imports; overdispersion; quarantine pest; right-
censoring

1. INTRODUCTION

The invasion of alien pests and diseases is one
of the most important socioecological challenges
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worldwide. The cost associated with biological inva-
sions are substantial and in the range of 2020 USD
$3-200 billions for different countries,' e.g., 2020
USDS$2.6 billion for New Zealand (Giera & Bell,

IThe following values were originally reported in the literature:
NZD$3.29 billion for New Zealand in 2009, AUD$13.8 billion
for Australia in 2011-2012, USD$18.9 billion for China in 2004,
CAD$34.5 billion in Canada in 2004, and USD$100.6 billion for
the United States in 2003 and USD$200 billion in 2010. We first
converted each currency to its 2020 value using the inflation cal-
culator of the reserve bank of New Zealand, the reserve bank
of Australia, the bank of Canada, and the U.S. bureau of statis-
tics, respectively. We then converted the 2020-NZD$, AUDS$, and
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2009), $11.4 billion for Australia (Hoffmann &
Broadhurst, 2016), $26 billion for China (Wan &
Yang, 2016), $34 billion in Canada (Colautti, Bai-
ley, Van Overdijk, Amundsen, & Maclsaac, 2006),
and $143-238 billion for the United States (Pimentel,
Zuniga, & Morrison, 2005; Pimentel, 2011). One op-
tion available to the regulator to monitor and reduce
biosecurity risk associated with international trade is
border inspection, that is, intercepting and stopping
pests at point of entry.

The role of border inspection in this context cov-
ers two of the three roles identified by Robinson,
Burgman, and Cannon (2011), namely, (1) monitor-
ing pathway risk and its evolution to make informed
decisions about the threat (e.g., shutting down a risky
pathway), and (2) reducing the number of propag-
ules entering the country (sometimes called leakage
or slippage, i.e., trade volume x infestation rate x
leakage rate) or the total pest risk (i.e., volume X in-
festation rate x leakage rate x impact) arriving in the
country by filtering highly infested consignments. In
this setting, infestation rate refers to the proportion
of units within a consignment that is a biosecurity risk
material. Intelligence about the infestation rate of
pathways that have the potential to carry quarantine
pests is critical to ensure a prompt response to out-
breaks and to make defensible decisions about the
allocation of inspection effort (Robinson, Chisholm,
Mudford, & Maillardet, 2016).

The strategic goals of monitoring and filtering
have most often been implemented as an acceptance
sampling problem. In acceptance sampling for bor-
der biosecurity, the typical recommendation is to in-
spect all incoming consignments with a sample size
n high enough to be “reasonably sure” that the pro-
portion of infested units in each consignment (i.e.,
the infestation rate p) is below a certain threshold
that is deemed “acceptable” by the regulator (IPPC,
2008). Consignments with zero infested samples are
deemed compliant, while consignments with at least
one infested units are filtered from the system. Us-
ing the number of infested units found & and sample
size n of the inspection, it is straightforward to es-
timate the infestation rate of a consignment (up to
some margin of error). By collating data from many
consignments, we can estimate the mean infestation
rate and quantify the threat posed by the pathway.

However, the number of infested units found is
seldom reported in regulatory databases. This is a

CADS$ to 2020 USDS$ using the U.S. federal reserve bank average
exchange rates for 2020.
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problem. An information that is more often available
to the analyst is the proportion or number of non-
compliant consignments in the pathway. Since con-
signments that failed inspection have at least one in-
fested unit (but we do not know the exact number)
out of the number of inspected samples, this can be
considered as a type of right-censoring of binomial
data.” It is theoretically possible to recover the mean
infestation rate of the consignment from the propor-
tion of consignments that failed inspection and the
inspection sampled size (as in Chen, Epanchin-Niell,
& Haight, 2018). In our article, we will show how to
streamline this estimation procedure by reparameter-
izing the problem in the framework of generalized
linear model (GLM) to leverage existing software so-
lutions and facilitate model extensions. By combining
theory and simulated and real inspection data sets,
our article also demonstrates that, in the presence of
overdispersion (i.e., varying infestation rates among
different consignments of the same pathway), using
censored data to estimate the mean infestation rate
of the pathway will underestimate the threat. Finally,
we show that overdispersion can be common in in-
spection data and that reconstructing pathway mean
infestation rate from censored data can lead to a sub-
stantial bias in real data sets.
The goals of this article are threefold:

1. Streamline estimating mean infestation rate of
a pathway from its proportion of consignments
that failed inspection by recasting the problem
in the framework of GLMs.

2. Test our ability to reconstruct mean infestation
rate from censored measurements using simu-
lated pathways with varying levels of mean in-
festation rate and overdispersion and using real
import pathways.

3. Show that our reconstructed estimates are bi-
ased when data are overdispersed and show
how prevalent is overdispersion in real biosecu-
rity inspection data sets.

2. MATERIAL AND METHODS

2.1. Acceptance Sampling for Border Inspection

In acceptance sampling for biosecurity border in-
spection, the typical recommendation is to inspect
all incoming consignments with a sample size high

ZRight censoring corresponds to situations where a data point is
above a certain threshold value but it is unknown by how much.
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enough to be “reasonably sure” that the proportion
of infested units in each consignment (i.e., the in-
festation rate p) is below a certain threshold that is
deemed “acceptable” by the regulator (IPPC, 2008).

Given an infestation rate p, the probability of
compliance after inspecting one unit randomly sam-
pled from the consignment is 1 — p. The probabil-
ity of compliance after inspecting » units is (1 — p)"
and the probability of noncompliance S (i.e., the
consignment-level failure rate or sensitivity of the in-
spection) follows:

S=1-(1-p). 1)

This is the basis for the “600 samples” rule of-
ten used in biosecurity (Venette, Moon & Hutchi-
son, 2002; IPPC, 2008). Under the “600 samples”
rule, consignments are deemed compliant if zero out
of 600 randomly sampled units within the consign-
ment are infected. According to Equation (1), the
sensitivity (sometimes called the confidence-level of
the inspection) for a 600-inspection sample and an
underlying infestation rate of 0.5% is S=1— (1 —
0.005)%%° ~ (0.95: in the long run, the “600 samples”
rule will detect ~95% of the consignments having an
infestation rate of 0.5%.

2.2. [Estimating the Mean Infestation Rate of a
Pathway from Censored Measurements

If we know the proportion of consignments that
failed inspection § in a pathway and the number of
units inspected per consignment n, we can solve for
the infestation rate p:

p=1-(1-5)". @

This equation is again best illustrated using the
“600 samples” rule: a pathway in which 95 out
of 100 consignments failed a 600-sample inspection
should have a mean infestation rate p=1— (1 —
95/100)1/6% = 0.005.

There are three issues in using Equation (1) to
reconstruct the infestation rate from censored mea-
surements: First, the proportion of failed consign-
ments is only known from discrete data (i.e., we do
not directly observe the proportion of failed con-
signments, but instead the number of failed con-
signments out of a number of inspected consign-
ments). To account for this binomial stochasticity, we
can assume that the total number of failed consign-
ments in the pathway comes from a binomial dis-

tribution (or equivalently, we can assume that each
consignment is a 0/1 Bernoulli experiment, see Chen
et al., 2018). Second, p is bounded in the 0-1 range,
which is sometimes problematic for the fitting algo-
rithms, especially when we want to quantify parame-
ter uncertainties. Both these issues can be by-passed
by reparameterizing Equation (1) in the framework
of GLMs with a Bernoulli distribution and a com-
plementary log-log (“cloglog”) link. We show the
equivalence between Equation (1) and its GLM
parameterization in Appendix A. The third and main
issue, which we will ignore in this section but cover
at length in the rest of the article, arises when p is
not constant—but varies among different consign-
ments of the same pathway (i.e., when pathways are
overdispersed). This will cause bias in the mean in-
festation rate per pathway estimated from censored-
measurement data.

But first, for pedagogical purposes, we will ig-
nore overdispersion. In the GLM model for cen-
sored measurements, the noncompliance status of
each consignment (zero if compliant, one if noncom-
pliant) is modeled as being sampled from a Bernoulli
distribution with mean given by the cloglog version
of the sensitivity equation (see Appendix A for the
equivalence between Equations (1) and (3)). The
model for censored-measurement data follows:

k* ~ Bernoulli(S) 3)
S=1-—exp(—exp(a +log(n))),

where k* is a right-censored version of k, a vector of
the number of infested units found in each inspec-
tion (i.e., k* equals zero if k = 0 and k* equals one
if kK > 1, essentially reporting the compliance or non-
compliance status of the consignment), S represents
the sensitivity of each inspection (i.e., the probability
of each consignment being noncompliant), « is the
mean infestation rate of the pathway on the cloglog
scale (see Appendix A), and n is a vector represent-
ing the sample size of each inspection. We obtain
the mean infestation rate p..,° reconstructed from
censored-measurement data by applying the inverse-
cloglog function: pe,s =1 — exp(—exp(a)) (i.e., we
fix n = 1 in Equation (3)).

For example, if 95 consignments failed compli-
ance and 5 are deemed compliant in a pathway,
we can estimate the mean infestation rate of the

3Here, we use the Dcens parameter to indicate that the estimate
comes from censored-measurement data and to distinguish it
from estimates computed from detailed and more direct data on
the number of infested units £ found in each inspection.



pathway by fitting this vector of binary consignment-
failure data using a GLM with a Bernoulli error
term and a cloglog link, adding an exposure term
(sometimes called offset) of log(600) to account
for the number of inspected units per inspection.*
The procedure gives an estimate for the intercept
o = —5.3, which translates to a mean infestation
rate peens of 1 — exp(—exp(—5.3)) = 0.005. We re-
cover the proportion of noncompliant consignments
(i.e., the sensitivity of the inspection) by adding
the 600 samples per consignment exposure: S =1 —
exp(—exp(—5.3 + 1og(600))) = 0.95.

2.3. [Estimating the Mean Infestation Rate of a
Pathway from Detailed Data on the Sample
Size n and the Number of Infested Units k per
Inspection

When we have access to detailed data on the
sample size n and number of infested units k per in-
spection, we can directly estimate the mean infes-
tation rate p of each consignment or of the whole
pathway. There are different ways to estimate this
quantity (Brown, Cai, & DasGupta, 2001), but for
the purpose of comparing our results with the
censored-measurements method (Equation (3)), we
will also use a GLM model with a “cloglog” link. The
model for uncensored data follows:

k ~ Binom(p, n), (4)
p=1-exp(=exp(a)),

where k is the observed number of infested units
per inspection, n in the sample size of the inspec-
tion, p is the mean infestation rate, and « is the in-
festation rate on the cloglog scale. Model inputs k
and n are single integers when we estimate p for
a single consignment but are vector integers when
we estimate p for a whole pathway (i.e., several
consignments).’

4Using the R software (R, 2018), the syntax for fitting Equation (3)
to such a vector of binary consignment-failure data is: k_star =
c(rep(1, 95), rep(0, 5)); n = rep(600, 100); glm(k_star ~ 1 + off-
set(log(n)), family = binomial(link = ”cloglog™)).

3In R, the syntax for fitting Equation (4) to, e.g., three inspected
consignments with zero, two, and five infested units in a 600-
samples inspection is: k = c(0, 2, 5); n = ¢(600, 600, 600);
glm(cbind(k, n-k) ~ 1, family = binomial(link="cloglog’)).
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2.3.1. Estimating the overdispersion parameter o of
the pathway

When we have access to detailed data on the
sample size n and number of infested units k per in-
spection, we can allow for varying infestation rate
among consignments of the same pathway (i.e.,
overdispersion) by adding a consignment-level ran-
dom effect (varying intercept) terms to Equation (4)
(Harrison, 2014).

ki~ Binom(pj, n;), (5)
pj=1—exp(—exp(a;)),

aj ~ Normal(a, o).

Due to the symmetry of the normal distribu-
tion, the estimated population parameter « repre-
sents both the mean and the median of the «; distri-
bution on the cloglog scale. However, in the original
scale, the distribution of p; is typically asymmetric
and right-skewed because the p; values for most of
the consignments are close to zero and the presence
of a few consignments with a higher infestation rate
creates a heavy right tail.

We show in Appendix B that the inverse-cloglog
transform of w: p = 1 — exp(—exp(a)) represents the
median of the distribution of p,—rather than its
mean. In a right-skewed distribution, the median of
the distribution p =1 — exp(—exp(a)) is lower or
equal to the mean p =p; =1 — exp(—exp(«;)). The
mean infestation rate p can be estimated using Monte
Carlo simulations: we first sample several «; values
from a normal distribution with mean « and standard
deviation 0. We then compute the p; values using the
inverse cloglog function and compute p = p; as our
estimate of the mean infestation rate. Alternatively,
the mean infestation rate p of the p; distribution can
be approximated by using the median of the distri-
bution and a correction term for the bias derived us-
ing Taylor expansion for the moments of functions of
random variables (Appendix B).

It is worthwhile noting that the asymmetry of the
p; distribution is not an artifact of using a cloglog
link to model the overdispersion, but stems from
the boundedness of the p; parameters and the fact
that a majority of the values are clustered on the
lower part of the 0-1 range: If the median infesta-
tion rate is already quite low, then there is not a lot
of room left for the consignments-specific p; to be
much lower, but there is a lot of room for p; values to
increase. Alternative ways to model overdispersion
on data bounded to the 0-1 range (consignment-level
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random effect based on a GLM with a logit link, beta-
binomial distribution, ...) would behave similarly.

2.4. Evaluating Our Reconstruction of Mean
Infestation Rate Estimated from Censored
Measurement

2.4.1.  Simulating Pathways with Varying Dgree of
Overdispersion

To check if we can recover the mean infesta-
tion rate of a pathway using only its consignment-
level failure rate, we ran a computational experiment
where we know the true mean infestation rates of the
pathway. Since we suspect that overdispersion might
affect our result, we simulated pathways with vary-
ing degree of overdispersion. We then evaluated our
method by comparing the estimated mean infesta-
tion rate per pathway from censored measurements
(using Equation (3)) with the true simulated infesta-
tion rate.

We fixed the design of our computational experi-
ment by simulating pathways with different values of
the infestation rate parameter on the cloglog scale («
=-9.2,-8.1,-6.9, -5.8, —4.6, —3.5, —2.3, and —1.0,
i.e., median infestation rates of ~ 107%, 3 x 107,
1073, 3 x 1073, 0.01, 0.03, 0.1, 0.3) and with overdis-
persion parameter (o = 0, 0.5, 1, and 2). These val-
ues where selected to cover a large range of potential
mean infestation rates and overdispersion found in
typical biosecurity pathways. We simulated 40 path-
ways corresponding to the 40 possible combinations
ofe ando.

For each of these 40 simulated pathways, we fol-
lowed the three steps below:

1. We simulate 100 consignments with varying in-
festation rate per consignment. We first sam-
pled 100 varying «; values on the cloglog scale
from a normal distribution with mean « and
standard deviation o. These 100 consignment-
specific values were then back-transformed to
the infestation rate scale by using an inverse
cloglog function (p; =1 — exp(—exp(c;))). At
this stage, we estimate the true simulated mean
p of the pathway as the mean of these 100 p;
values.

2. We simulate a 600-unit inspection for each
of the 100 consignments of the pathway. The
compliance status of each consignment is sam-
pled from a Bernoulli distribution with mean
given by the sensitivity of the inspection (Equa-

tion (1), using the consignment-specific p; and
n = 600). This gives us the number of noncom-
pliant consignments out of 100.

3. We then estimate the mean infestation rate of
the pathway p..,s by fitting Equation (3) to the
number of noncompliant consignments out of
100 consignments.

For each of the 40 simulated pathways, we re-
peated the procedure 1,000 times and summarized
the results by using the mean and 95% percentile
range of the 1000 mean infestation rate estimates.

2.4.2.  Case Study with Real Border Inspection Data

To assess whether we can reliably reconstruct the
infestation rate of pathways from consignment-level
failure data and to quantify the degree of overdis-
persion typical in real import pathways, we used a
database of live germplasm interception data to Aus-
tralia. This specific data set was chosen because each
inspection reported the detailed sample size n of
the inspection and the number of infested units k in
the sample. From these detailed data, we then com-
puted a censored data set reporting only the num-
ber of noncompliant consignments in each pathway
(i.e., consignments were considered to fail inspection
when at least one infested unit was found during the
inspection).

In this germplasm pathway data set, we filtered
the data to only retain inspections with 20-1000 in-
spected units. When then filtered the data to only re-
tain genus that had at least 30 consignments. We were
left with 9,364 consignments, 55 genus, from 184 im-
porters across 26 countries. The median number of
inspected units per consignment was 77 (2.5-97.5%
percentile range of 22-630) and the mean infestation
rate per consignment was of 1.4% (2.5-97.5% per-
centile range of 0-14%). In this data set, we consid-
ered each genus to be an individual pathway.®

We computed the mean infestation rate p of each
pathway using the detailed data on the number of
infested units and the number of sampled units per
pathway using Equation (4). We also estimated the
mean infestation rate p.,s of the pathway from its
consignment-level failure data using Equation (3).

®While further stratification of the pathway is possible in the-
ory (e.g., genus x importer), there is typically not enough con-
signments per stratum (e.g., if we were to stratify one of our
largest pathway (528 consignments) by importer companies (83
importers), only 20% of the importers would have >10 inspected
consignments) to get reliable estimates of mean infestation rate.
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Fig 1. Estimated infestation rate using consignment-level failure (censored-measurements) vs. true simulated infestation rate. Dots indicate
the mean of 1,000 replicates of the simulation. The bars indicate 5-95% quantiles of the replicated simulations. The solid lines show the 1:1
line (estimated pce,s = true p). Dots below the solid line show that p..,s underestimates the true p.

Additionally, to visualize whether eventual differ-
ences in the estimates of p..,s versus p can be at-
tributed to pathway overdispersion, we estimated o
for each pathway by fitting Equation (5) to the de-
tailed data on the number of infested units and the
number of sampled units per pathway, allowing for
a consignment level random effect on the intercept.
To further check whether the differences in the esti-
mates of p..,s versus p can be explained by pathway-
specific overdispersions, we used Equation (B1) to
compute a bias-corrected p.,s that corrects for the
overdispersion of the pathway (Appendix B).

3. RESULTS

3.1. Simulated Pathways with Increasing
Overdispersion

In the absence of overdispersion (left panel of
Fig. 1) and when true p is <3%, pcens €stimated from
consignment-failure data matches the true simulated
p (the dots follow the 1:1 line). However, when
the true infestation rate is above a certain thresh-
old (> 3%), estimated p..,s saturates leading to an
underestimation bias. This threshold happens when
the true infestation rate is too high and 100% of
the consignments are noncompliant: The estimated
mean p..,s plateaus when p..,; is high enough to pre-
dict close to 100% consignment failure. For a 600-
unit inspection, this plateau happens for an infesta-
tion rate of 3% (i.e., the sensitivity of the inspection
in Equation (1), 1 — (1 — 0.03)%% is nearly indistin-
guishable from one). Working with censored mea-
surements and a GLM approach will typically under-
estimate the infestation rate when the true infesta-
tion rate is too high. Note that when using the GLM
approach, the specific value estimated for p..,; when

100% of the consignments are noncompliant will be
sensitive to the optimization algorithm used, the tol-
erance parameter that defines when we have reached
convergence, and the starting parameter values of
the optimization procedure. By contrast, when 100%
of the consignments are noncompliant, the simple
formula given in Equation (2) will instead predict
Deens = 100% (i.e., overestimate the infestation rate).

As we increase the overdispersion in our simu-
lated data (i.e., the variability in the infestation rates
among consignments within each pathway increases,
see Panels 2-5 in Fig. 1), the estimated p,.,s from
consignment-level failure data show increasing nega-
tive bias. This underestimation of true p by p.,s also
increases with the value of the true infestation rate.
This is most visible in the right panel of Fig. 1 (high
overdispersion with o = 2), in which the pe,s/p = 0.1
when true p is 0.1% (i.e., a 10-fold underestimation),
but the bias becomes p...,/p = 0.04 when true p =
10% (i.e., a 40-fold underestimation).

3.2. Case Study in the Germplasm Data Pathways

With the exception of two pathways that have
a low mean infestation rate and overdispersion at
the bottom left of Fig. 2(a), there was a systematic
downward bias in the p estimated from censored-
measurements in our germplasm interception data
set (Fig. 2(a)). Mean infestation rate estimated from
censored measurements were an average ~ 0.3 times
lower than expected, with the downward bias in-
creasing with increasing values of the overdispersion
parameter of the pathway o.

As already noted, the origin of the bias is well
understood and, if we know the @ and the overdis-
persion parameter o of the pathway, then we can
correct for the bias using Taylor expansion method
(Equation (B1), Fig. 2(b)). The bias-correction term
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Fig 2. Comparison of the mean infestation rate per pathway estimated using the detailed data (inspection sample size n and the number
of infested units found & in each consignment) vs. the censored measurements (number of failed consignments and total number of in-
spections). Each dot represents the mean infestation rate of the genus estimated from the full data (x-axis) and the censored measurements
(y-axis). (b.) Same analysis but applying the bias correction from Equation (B1) to the estimates obtained from the censored-measurements.
The o value of each pathway used for the bias correction was estimated by fitting Equation (5) to the detailed data. The solid lines show the
1:1 line (estimated p = true p). Points below the line show that the estimated p underestimates the true p.

is a nonlinear function of @ and o (Fig. B1). Unfortu-
nately, even if we understand where the bias comes
from, we cannot correct for the bias in practice as
we cannot estimate the overdispersion parameter o
from the binary censored measurements. Sadly, if we
only have access to censored measurements, we are
not able to know if there is a bias.

Yet, using the detailed data on the number of in-
fested units per inspection, we found evidence for
overdispersion in 38 of the 40 germplasm import
pathways: with the exception of two pathways at
the bottom left of Fig. 2, model fits were systemati-
cally better (in terms of widely applicable informa-
tion criteria, WAIC; Watanabe, 2013) with overdis-
persion (Equation (5)) than without overdispersion
(Equation (4)). While this shows that we can reliably
reconstruct the mean infestation rate from censored
measurements in the absence of overdispersion (e.g.,
the two pathways without overdispersion at the bot-
tom left of Fig. 2(a). sit right on the 1:1 line), it also
shows that overdispersion is the rule rather than the
exception in our data set.

Finally, note that the overdispersion parame-
ter cannot be estimated from the Bernoulli dis-
tributed censored measurements. The bias correction

in Fig. 2(b) is essentially an exercise to see if we un-
derstand the source of the bias. It is not a bias correc-
tion that we will be able to apply in practice.

4. DISCUSSION

In many applications of biosecurity, it can be use-
ful to know the mean infestation rate of different im-
port pathways (e.g., to quantify the import risk and
prioritize inspection effort). However, we do not al-
ways have access to detailed data on the number of
infested units found in each inspected consignment.
Rather, we more often have access to the proportion
or number of consignments that were rejected during
the inspection (i.e., consignments with > one infested
sample in the inspection). While it is tempting to
use this censored measurements to reconstruct mean
infestation rate of the pathway, this will typically
underestimate the true infestation rate (by an av-
erage factor of ~ 0.3 in our germplasm data set).
This underestimation issue is due to overdispersion
(i.e., varying infestation rate among different con-
signments of the same pathway) and the issue in-
creases with increasing levels of overdispersion and
median infestation rate of the pathway.



4.1. Reconstructing Infestation Rate from
Censored-Measurements in the Absence of
Overdispersion

When there is no overdispersion, it is possible to
reconstruct the mean infestation rate of a pathway
if we know the number of consignments that failed
inspection (i.e., inspection with > one infested unit)
and the number of inspected units per consignments
(left panel of Fig. 1 with o = 0).

However, reconstructing the mean infestation
rate from censored measurements fails for pathways
with high infestation rate. Specifically, the recon-
structed p.,s plateaus when 100% of the consign-
ments fail compliance: in such case pcens is (wrongly)
estimated to be the minimum infestation rate that
predicts close to 100% of the consignment to fail
compliance. For example, for a 600 units inspection
and true infestation rates >3%, pc.s values satu-
rate at 3% (left panel of Fig. 1), as the sensitiv-
ity 1 — (1 —0.03)% (Equation (1)) is almost indis-
tinguishable from one. Counterintuitively, increasing
sample size will make this saturating bias at high in-
festation rate more noticeable (e.g., for a 3,000 units
inspection, the saturation will happen for true infes-
tation rates >0.3%, as 1 — (1 — 0.003)*°% is almost
indistinguishable from one).

Getting data from additional inspections—rather
than increasing the sample size of each inspection—
might help with this saturation bias. Additional in-
spections data will increase the resolution on the
proportion of consignments that fail inspection and
increases the likelihood of having at least one com-
pliant consignment in the pathway, allowing us to
get identification. The saturation issue might also be
mitigated by pooling several pathways together and
modeling them using hierarchical models (Gelman
et al., 2014). In hierarchical models, pathways where
the infestation rate can be estimated (i.e., pathways
that do not have 0% or 100% of consignment failing
inspection) will help estimating the infestation rate of
pathways that are not well identified.

4.2. Reconstructing Infestation Rate from
Censored Measurements in the Presence of
Overdispersion

Reconstructing the mean infestation rate from
censored measurements also fails when the data are
overdispersed. Combining censored measurements
with overdispersed data can lead to a substantial
(e.g., an order of magnitude) underestimation bias.
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Sensitivity S; (¥ )

Pcens Infestation rate p; (X )

Fig 3. Illustration of the effect of Jensen’s inequality on the es-
timation of infestation rate pce,s from the observed proportion
of consignment that failed inspection (S) and in the presence of
overdispersion. We used Equation (1) to map from the x-axis to
the y-axis and use Equation (2) to map from the y-axis to the x-
axis. We have two consignments with infestation rate p; and p,
and mean infestation rate p. We use Equation (1) to compute the
sensitivity Sy and S, of each consignment under a 600-unit inspec-
tion (gray arrows). The mean sensitivity, which is also the propor-
tion of failed consignments that we would observe in our empiri-
cal data is S. Now if we were to ignore the overdispersion and use
Equation (2) to try reconstructing the mean infestation rate from
S (red arrow), we obtain pe.,s. As shown in the figure, pc.,s under-
estimates p. If the points p; and p, were further apart (i.e., higher
overdispersion), the underestimation bias would be higher.

The origin of the bias is well understood and
comes from Jensen’s inequality, which states that
convex transformation of a mean is lower than or
equal to the mean applied after convex transforma-
tion (i.e., peens = £(5)) < 7(5,) = P) (Fig. 3).

In the presence of overdispersion, each consign-
ment has its own infestation rate p; and we are inter-
ested in estimating the mean infestation rate p of the
pathway. When using censored measurements, we do
not observe individual p;’s but the proportion of con-
signments that failed inspection S. Since p; and S are
linked with the sensitivity equation (Equation (2)),
we can try reconstructing p from S. However, in the
presence of overdispersion, the method fails due to
the convex nature of the function allowing us to cal-
culate p from S (be it Equation (2) or Equation (3)).

The issue is best illustrated using a concrete
example (Fig. 3): Say we have two consignments
with infestation rate p; and p, and mean infestation
rate p. We then use Equation (1) (gray arrows) to
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compute the sensitivity S; and S, associated with
each consignment under a 600-unit inspection. The
mean sensitivity, i.e., the proportion of failed consign-
ments that we would observe in our empirical data,
is S. Now if we were to ignore overdispersion and
directly use Equation (2) (red arrow) to try recon-
structing the mean infestation rate from S, we would
obtain p..,s, which underestimates p due to the con-
vex nature of Equation (2) (Fig. 3):

Pcens = 1-— (1 - S_j)l/n =< 1- (1 - Sj)l/n = ﬁ (6)

Graphically, we can see that the amounts by
which p..,s underestimates p depends on the degree
of curvature of the function relating S to p (the higher
the curvature, the higher the bias) and the degree of
overdispersion of the pathway (the further p; and
p> are apart from each other, the higher the bias)
(Fig. 3). Thus, if we know the degree of overdisper-
sion in p and the curvature around the function eval-
uated around p, we might come up with a correction
term for this bias. This is exactly what the Taylor ex-
pansion allows us to do (Equation (B1)): The bias
correction term depends on the second derivative of
our function (i.e., the curvature) and the overdisper-
sion parameter o.

Note that the fact that the bias increases with
overdispersion does not depend on the specifics of
the model used to reconstruct the mean infestation
rate of a pathway from censored measurements (i.e.,
whether we are using Equation (2) or Equation (3)).
Rather, the presence of the bias is an unavoidable
consequence of the convex nature of the function re-
lating S to p and the bias expresses itself only in the
presence of overdispersion.

Note that while we understand the origin of the
bias well (Appendix B) and can correct for it when
we know the overdispersion parameter o of the path-
way (Fig. 2(b)), in practice we cannot correct for the
bias as we cannot estimate the overdispersion param-
eter o from Bernoulli distributed censored measure-
ments data. Worse, if we only have access to censored
measurements, we cannot know if there is overdis-
persion and thus if there is a bias.

4.2.1. Overdispersion Seems to Be Common in
Biosecurity Inspection Data

In our germplasm import data set, 38 of the 40
pathways show evidence of overdispersion (i.e., all
the pathways that are below the 1:1 line in Fig. 2(a)).
Overdispersion is also present in other published

biosecurity inspection data sets (e.g., the Kiwi import
pathway to Japan, fig. 2 of Yamamura & Sugimoto,
1995).

The cause of overdispersion in biosecurity in-
spection data is diverse. For one, no consignment
(even from the same exporter company) is ex-
actly the same as the other ones. Product quality
and the exposure to different pests and diseases
might change with time and even the most rigorous
quality management process will allow for some
variation. Additionally, it is common for pests to
have aggregated distributions (Hughes & Madden,
1992). Aggregated distributions will lead pests to
cluster preferentially in certain consignments and
not in others. This initial variability in infestation
rate might further be amplified by exponential pest
growth during transit from the exporter to importer
country. Part of the overdispersion observed in
biosecurity data also likely comes from a lack of
data stratification on the part of the analyst (e.g., we
stratified pathways by genus, but we might also have
considered stratifying by country of origin, importer
companies, ...). However, we caution that additional
stratification can leads to strata with a number of
consignments too low to make reliable inference. For
example, if we were to stratify one of our largest
pathway (528 consignments) by importer companies
(83 importers), only 20% of the importers would
have >10 inspected consignments. There would not
be enough consignments per strata to get reliable
estimates of mean infestation rate. Furthermore,
when we tried explaining some of the variability
in infestation rate among consignments by adding
covariates (e.g., country of origin, importer and
exporter companies, year, and month of inspection,
with an interaction between year and month of
inspection) to Equation (5), we were only able to re-
duce the overdispersion parameter o per pathway by
an average of 14% compared to using Equation (5)
without covariates. This shows that a large part of the
variability in infestation rate among consignments is
irreducible given the level of information typically
available to biosecurity analysts.

Given that overdispersion seems to be common
in biosecurity data, if we cannot estimate the overdis-
persion of the pathway because we only have access
to censored data, we suggest being conservative and
assuming that overdispersion is present. This means
that in most cases, we should avoid estimating the
mean infestation rate of a pathway from censored-
data as it will underestimate the true infestation rate
of the pathway.
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4.2.2.  Consequences of Using Biased Estimates of
Mean Infestation Rate for Monitoring and
Targeted Sampling

Monitoring pathway infestation rate using cen-
sored data will likely lead to underestimating the
biosecurity risk associated with different pathways.
This might give a false sense of confidence and im-
pair making informed decisions about the threat.

While shifting sampling effort from low-risk
to high-risk pathways (i.e., targeted sampling) has
been shown to reduce leakage (by a factor of 0.7-
0.8; Robinson et al., 2011; Springborn, Lindsay &
Epanchin-Niell, 2016; Chen et al., 2018), targeted
sampling based on biased estimates of infestation
rates can potentially be harmful (see also Powell,
2015). Since overdispersion (and thus bias) will vary
among pathways, targeted sampling will likely be
sub-optimal, and might even be detrimental in cases
where we decrease sampling effort in pathways that
were thought to have low infestation rate (but had
high infestation rate) to redistribute it to other path-
ways.

For example, we might imagine two pathways
with different mean infestation rate and overdisper-
sion: Pathway A has a true infestation rate ~ 1%,
estimated to be ~ 0.1% due to high overdisper-
sion. Pathway B has a true infestation rate of 0.3%,
estimated to be ~ 0.3% as it has low overdisper-
sion (these two types of pathways can be found in
Fig. 2(a)). In such a case, targeted sampling will rec-
ommend increasing inspection sample size on path-
way B and decreasing on pathway A. Unfortunately,
it is the opposite of what should be done if we wanted
to reduce the leakage.

4.2.3. Importance of compiling all the data

Reconstructing the mean infestation rate of
pathways from censored measurements leads to bi-
ased estimates. To counteract this issue, we suggest
collecting and reporting detailed data on the num-
ber of infested units and the sample size of each in-
spected consignment instead of only its compliance
status. This will support reliable estimates of pathway
mean infestation rate.

Additionally, the detailed data will also allow es-
timating the overdispersion parameter of each path-
way. Knowing the degree of overdispersion of differ-
ent pathways is important. We might want to treat
pathways with similar mean infestation rate but dif-
ferent overdispersion differently. For example, when
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there is high overdispersion in a pathway, inspection
act as a sieve, preferentially filtering highly infested
consignments and accepting consignments with a low
infestation rate. With high overdispersion, even small
sample size inspections will weed out the few highly
infested consignments, greatly reducing the mean in-
festation rate in accepted consignments. Also, while
in the absence of overdispersion, the optimization
procedure for targeted sampling often suggest invest-
ing maximum sampling effort in the most infested
pathways and not sampling lower infested pathways
(Chen et al., 2018), in the presence of overdispersion,
we would likely want to inspect most pathways with
at least a small sample size to weed out the few highly
infested consignments.

On the other hand, if all the consignments of a
pathways have similar infestation rate (no overdis-
persion), there will be little improvement to be made
in reducing the infestation rate before and after in-
spection. Worse, in the absence of overdispersion,
the inspection will randomly filter some of the con-
signments according to the sensitivity of the test,
but the infestation rate of these noncompliant con-
signments will be no different than that of the ac-
cepted consignments. While this is an extreme case, it
highlights that we often implicitly assume that there
is some degree of overdispersion in the pathways:
We assume that infestation rate in accepted consign-
ments is lower that in the filtered consignment. Oth-
erwise there would be no point in doing inspections.
If most pathways are overdispersed and if the de-
gree of overdispersion affects inspection efficiency,
we suggest there is valuable intelligence to be gained
in estimating pathway overdispersion.

5. CONCLUSION

While in theory it is possible to leverage Equa-
tion (1) (or its reparameterization Equation (3))
to reconstruct the mean infestation rate of differ-
ent pathway from censored measurements (i.e., the
proportion of consignment that failed in the path-
way), the methods greatly underestimate mean infes-
tation rate when there is overdispersion (i.e., vary-
ing infestation rate among different consignments
of the same pathway). Since overdispersion is com-
mon in biosecurity data and since the consignment-
level failure data cannot be used to detect overdis-
persion, we advise against reconstructing infestation
rate from censored measurements. Instead, we rec-
ommend recording detailed data (the sample size n



Overdispersion-Induced Bias When Estimating Mean Infestation Rates from Right-Censored Data 11

and the number of infested units k) of all inspected
consignments.
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APPENDIX A

In this appendix, we show the equivalence be-
tween Equation (1) and the cloglog parameterization
used in a GLM framework.

We begin with Equation (1)

S=1-(1-p),
S=1-—exp(log(1—p) x n). (A1)

Since for p € (0,1),
log(1 — p) = — exp(log(—log(1 — p))).
Then, log(1 — p) x n = — exp(log(—log(1 — p))) x n,
log(1 — p) x n = — exp(log(—log(1 - p))
+ log(n)). (A2)

Replacing log(1 — p) x n in Equation (Al) by
—exp(log(—log(1 — p)) + log(n)) in Equation (A2)
gives the following expression for the sensitivity:

S=1-exp| —exp| log(—log(1 — p))+ log(n)
———
cloglog link=«

log(exposure)

The infestation rate p after inspecting one unit
can be computed as:

log(—log(1 - p)) = a,
— log(1 — p) = exp(a),
log(1 — p) = —exp(a),
p=1—exp(—exp(a)).

The last equation is the inverse—cloglog link func-
tion typically found in textbooks on complementary

log-log regression. The inverse—cloglog function ef-
fectively bounds the « parameter from the — inf 4 inf
range to the 0-1 range and allows streamlining esti-
mations of p using standard GLM methods.

We obtain the probability of noncompliance af-
ter inspecting n units by adding the exposure term
for the number of inspected units #:

S=1-—exp(—exp(a +log(n))).

Since the data itself are binary (compliant con-
signment = 0, noncompliant consignment = 1), it is
appropriate to use a Bernoulli error distribution to
fit the data, leading to Equation (3).

APPENDIX B

In this appendix, we derive a bias-correction
term for the inverse—cloglog function in the presence
of overdispersion.

Using Taylor expansion for the moments of func-
tions of random variables (sometimes called the a
second-order “delta” method), the mean of a func-
tion f of a random variable X can be approximated
from the function evaluated at the mean of X and
a bias correction term. The bias correction terms is
the product between the second derivative of the

©
—

©
—

0.0

Theoretical bias

Fig B1. Theoretical bias correction term for the mean infestation
rate vs. pathway overdispersion (o) and median infestation rate
(@, expressed in the cloglog scale) computed from Equation (B1).
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function f evaluated at the mean of X and the
variance of the random variable o>. The general for-
mula follows:

- J— J— 0'2
0 ~ f(X)+ 1/ (0 %

Our function of interest is the inverse—cloglog
developed in Equation (3). The function and its sec-
ond derivative follow:

flaj) =1 —exp(—exp(a;)),
f'(aj) = —exp(a; — exp(a;))(exp(a;) — 1),

where «; a random variable sampled from a nor-
mal distribution with mean @ and standard devi-
ation o. Thus, the bias-corrected mean infestation
rate p = f(«;) of a pathway can be approximated
following:

Median of the p; distribution

p=1—exp(—exp(a;)) ~ 1—exp(—exp())

(BY)
O.2
—exp(@ — exp(@)) (exp(@) — 1) 7.

Bias correction term

The bias-correction terms in Equation (B1) in-
creases with the overdispersion terms o and with the
@ parameter (i.e., median infestation rate expressed
in the cloglog scale) (Fig. B1).

Demonstration that 1 — exp(—exp(@)) is the median
of the p; distribution. Since the distribution of «;
is Gaussian and symmetric, 50% of the mass of the
distribution is below o and 50% is above it: « is
both the mean and the median of the «; distribu-
tion. While the inverse—cloglog transformation that
maps «; to p; stretches the o; values on both sides
of « differently, the inverse—cloglog transformation is
monotone: «; values that are below o map to p; val-
ues below 1 — exp(—exp(«)) and «; values that are
above @ map to p; values above 1 — exp(—exp(@)).
This means that we have 50% of the mass of the p;
distribution below 1 — exp(—exp(«)) and 50% of the
mass above it: The inverse-cloglog function of (&) is
the median of the p; distribution.
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