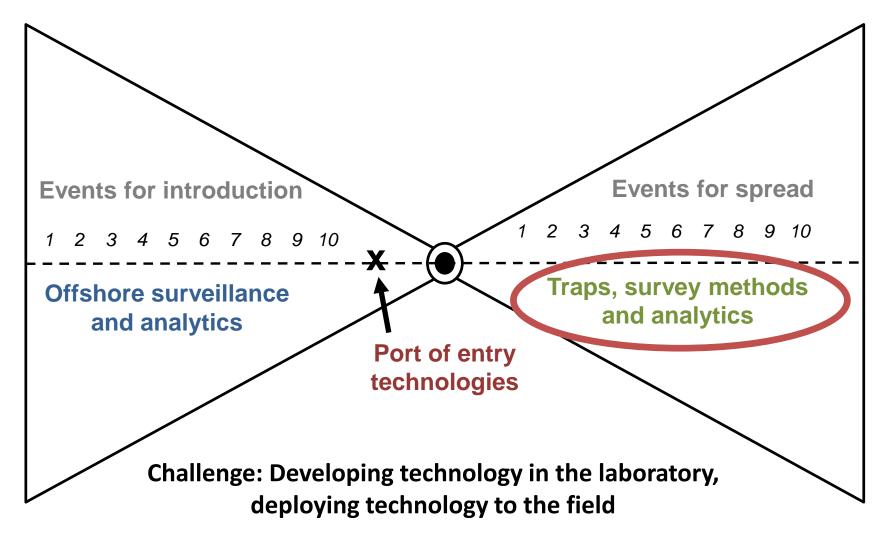

Scientific Support and Tools for Surveillance

Christina Devorshak
USDA APHIS PPQ Science and Technology
October 2017



Introduction and Spread of Pests

Opportunities for Surveillance

Scientific Support and Tools

- Survey support
 - Domestic
 - Offshore
 - Programs
- Pest analysis and prioritization
- Survey methods and manuals
- Mapping and Spatial analysis
- Survey tools
 - Lures and traps
 - Molecular analytics

Tools and Services

Tomato Leaf Miner - Tuta absoluta

Effective: March 18, 2014

Resources: Global Pest & Disease Database CPHST Pest Datasheet

Taxonomic Position: Lepidoptera: Gelechiidae

Pest Type: Insects

Pest Code (NAPIS): ITAMCLA

This pest is a member of the following lists:

List	2014	2015	2016
Economic and Environmental	list	<u>list</u>	<u>list</u>
Solanaceous	reference	reference	<u>reference</u>

This datasheet represents an Approved Method for: 2014, 2015, 2016

Human and Animal Pathogens Transmitted:

Not known to transmit any human or animal pathogens.

Plant Pathogens and Organisms Vectored:

Not known to vector any pathogens or other associated organisms but damage may lead to invasion by secondary pests

Survey

Approved Method(s):

Method	Product Name / Instructions	NAPIS Survey Method
Trap	Large Plastic Delta Trap Kits, Orange	00009 - Trap;Delta Pheromone (Large Plastic)
Trap	Large Plastic Delta Trap Kits, Red	00009 - Trap;Delta Pheromone (Large Plastic)
Trap	Large Plastic Delta Trap Kits, White	00009 - Trap;Delta Pheromone (Large Plastic)

Trap Spacing: When trapping for more than one species of moth, separate traps for different moth species by at least 20 meters (65 feet). **Method Notes:**

9/11/12: A new type of sticky trap insert (liner), which uses a hard type of adhesive, has been approved for use in *Tuta absoluta* CAPS surveys. This product has been tested by CPHST and has been found to be as effective as the traditional trap liners at capturing *Tuta absoluta*. In addition, the identifiers are able to pre-screen a higher number of specimens from the hard glue liners, and the specimens tend to be of higher quality. The product name in the IPHIS survey Supply Catalog is Large Plastic Delta Trap - Liners - Hard Glue.

Trap color is up to the state and does not affect trap efficacy.

Approved Lure(s):

Option	Product Name	Dispenser	Effectiveness	Compound(s)
1	Tuta absoluta Lure	rubber septum	28 days	E3Z8Z11-14Ac E3Z8-14Ac

Lure Placement: Do not include lures for other target species in the trap when trapping for this target.

Approved Survey and Diagnostic Methods

 Based on scientific recommendations, practicality at the field level, identifier needs, and cost.

Benefits of standardizing survey methods

- Ensure best methods are used
- Homogenize the data collected

ved methods)

 Methods available on CAPS Resource and Collaboration website (http://caps.ceris.purdue.edu/appro

Tools and Services

Pest Survey Manuals

- •CAPS surveys use commoditybased or bundled survey approach.
- •Increases efficiency by surveying for group of exotic pests at same time.

Types of manuals:

- _oCommodity-based
- _oTaxon-based
- oPathway-based

Solanaceous Hosts Commodity-based Survey Reference

2017 Version

Spatial Analysis: SAFARIS

Spatial Analytic Framework for Advanced Risk Information Systems

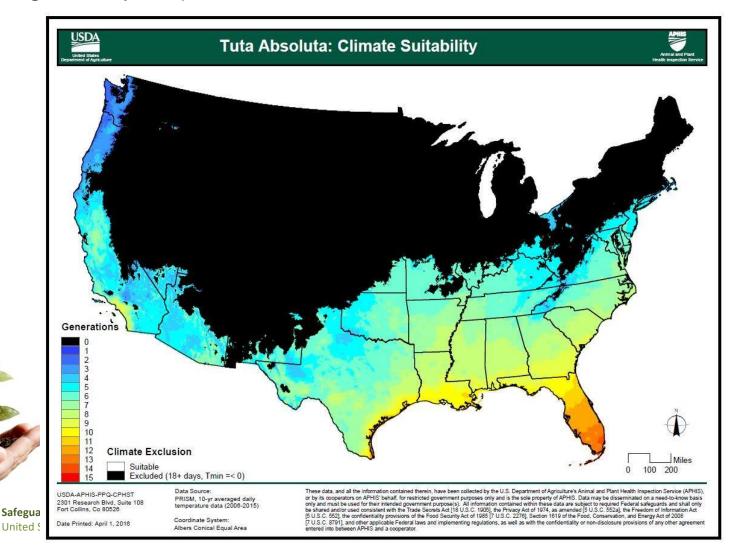
 System to forecast exotic species behavior for assisting pest survey, risk assessments, pest emergency responses, and economic assessments.

Three components:

- Databases containing biotic and abiotic data
 - Knowledge base repositing pest information and expert opinions
 - Forecast models and analytic tools

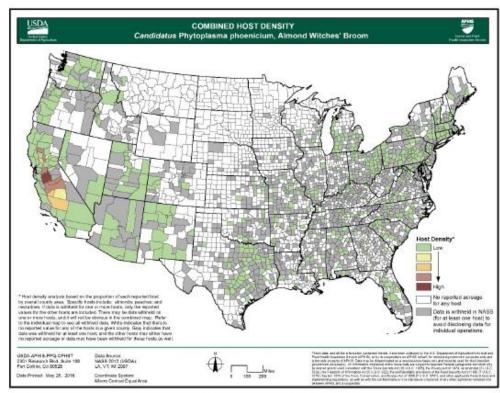
Spatial Analysis: SAFARIS

Spatial Analytic Framework for Advanced Risk Information Systems


HOMESITE ABOUT P	HENOLOGY MODEL	ANALYTIC TOOLS	INSECT POPULATION MODEL	SHOWCASE	
Begin Date	12		Low temperature mortality	Parameters Units	Default
End Date			Low Temperature Threshold	13.3 C	-100
Email Address	12	_	Low Temperature Theta o	1101.7 None	1101.7
Email Address		_	Low Temperature Theta 1	-49892.0 None	-49892
Pest Name			Low Temperature Theta 2	-162.9 None	-162.9
Development	Parameters Units l	Default	High temperature mortality	Parameters Units	Default
Minimum Temperature	13.3 C	10	High Temperature Threshold	39.0 C	100
First optimum temperature	24.0 C	20	High Temperature Theta o	25.9 None	25.9595
Second optimum temperature	34.0 C	30	High Temperature Theta 1	-0.49 None	-0.4959
Maximum Temperature	41.0 C	35	High Temperature Theta 2	o.o None	o
			Wet Soil moisture mortality	Parameters Units	Default
Population Growth	Parameters Units	Default	Soil moisture threshold %	80.0 %	80
Days to one generation	30.44 D	30			
Max. generation	4 None	3	Days to 100% death	2.1 days	
Initial Population	O.O1 None	0.01	Pupal Stage fraction	0.36	
•	0.01				
Maximum Population	1 None	1	Age mortality	Parameters Units	Default
Population Extinction	o None	0	Rate	0 h-1	0

Submit

CLIMATE SUITABILITY - TUTA ABSOLUTA


Degree Day Map - Generations

Spatial analysis: Tools and Services

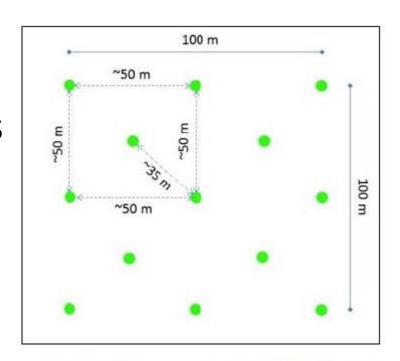
Spatial analysis

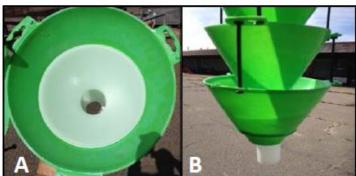
- Focus on host distribution maps, climate suitability maps, and pest-specific analyses.
- Products support surveillance planning and resource allocation through a better understanding of pest
 risk dynamics.

Figure 7. Combined distribution map for '*Candidatus* Phytoplasma phoenicium' within the continental United States. Values represent combined host density low to high (almond, peach, and nectarine). Map courtesy of USDA-APHIS-PPQ-CPHST.

Traps and lures

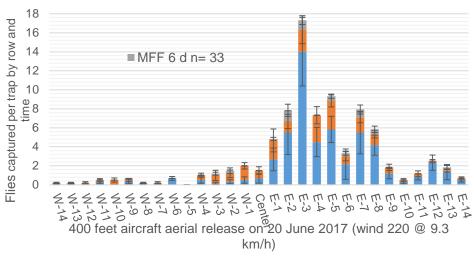
- Trap design and deployment
- Color, chemistry, placement...

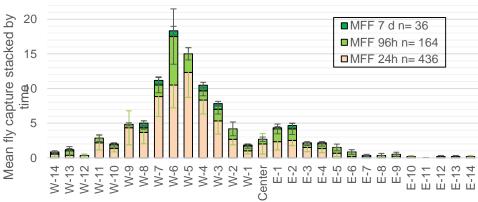




Traps and lures

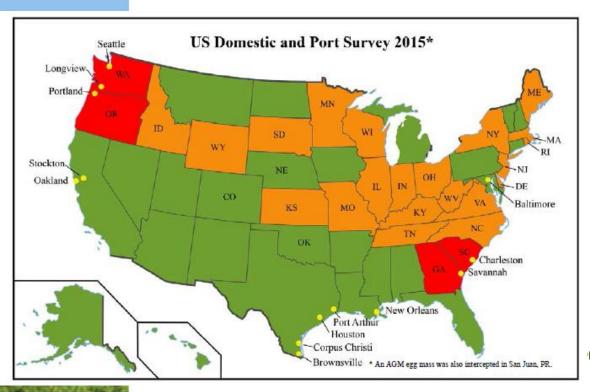
- Detection
- Population estimates
- Hosts





Traps and lures

Testing fruit fly release by UAV in south Texas



Safeguarding America's Agricultural and Natural Resources

United States Department of Agriculture | Animal and Plant Health Inspection Service | What Profiet in Page dyed flies field 2

Molecular analytics

- Asian and European GM Trapping
- Molecular identification to differentiate types
- Annual baseline mapping for EGM
- Detection of any new AGM

Port	Number of egg masses
Baltimore, MD*	5
Brownsville, TX*	4
Charleston, SC*	8
Corpus Christi, TX**	4
Houston, TX*	4
Longview, WA*	1
New Orleans, LA*	18
Oakland, CA*	1
Port Arthur, TX*	2
Portland, OR*	5
San Juan, PR*	1
Savannah, GA	4
Seattle, WA*	3
Stockton, CA	1

Acknowledgements

- Hugh Conway
- Scott Pfister
- Scott Myers
- Amanda Kaye
- Ignacio Baez
- Greg Parra
- Heather Moylett
 - **Allard Cosse**

- Lisa Mosser
- Norman Barr
- Richard Zink
- Matt Ciomperlik
- Mark Nakhla
- Evan Brasswell
- Dave Bartels
- Don Seaver
- Tracy Ayer