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Perspective

Risk-Based Sampling: I Don’t Want to Weight in Vain

Mark R. Powell

Recently, there has been considerable interest in developing risk-based sampling for food
safety and animal and plant health for efficient allocation of inspection and surveillance re-
sources. The problem of risk-based sampling allocation presents a challenge similar to fi-
nancial portfolio analysis. Markowitz (1952) laid the foundation for modern portfolio theory
based on mean-variance optimization. However, a persistent challenge in implementing port-
folio optimization is the problem of estimation error, leading to false “optimal” portfolios and
unstable asset weights. In some cases, portfolio diversification based on simple heuristics (e.g.,
equal allocation) has better out-of-sample performance than complex portfolio optimization
methods due to estimation uncertainty. Even for portfolios with a modest number of assets,
the estimation window required for true optimization may imply an implausibly long station-
ary period. The implications for risk-based sampling are illustrated by a simple simulation
model of lot inspection for a small, heterogeneous group of producers.
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1. INTRODUCTION

Recently, there has been considerable interest in
developing scientific schemes for risk-based sampling
of food, animals, and plants for effective enforce-
ment of regulatory standards and efficient alloca-
tion of surveillance resources. It seems intuitive that
products and producers that present higher sanitary
and phytosanitary (SPS) risks warrant higher fre-
quency and intensity of safety inspection and surveil-
lance activities performed under a budget constraint.
Indeed, this resource allocation problem presents a
challenge similar to the familiar problem where an
investor seeks to optimize the allocation of limited
funds among alternative assets. However, both the
SPS and finance domains are characterized by non-
stationary processes, and this presents a fundamental
challenge for optimization strategies.(1–3) After intro-
ducing some background on risk-based sampling in
the SPS context, this perspective will briefly review
some relevant findings from the financial portfolio
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optimization literature. This is followed by a simple
simulation model that illustrates some of the implica-
tions for risk-based sampling in the SPS arena.

There appears to be widespread agreement, at
least in principle, that risk-based sampling repre-
sents an optimal strategy for resource allocation. Be-
ginning in the early 1990s, policy reviews have rec-
ommended that federal food safety agencies adopt
risk-based inspection.(4,5) In practice, the develop-
ment and implementation of risk-based food safety
inspection has been a challenge, particularly in light
of legal constraints on minimum inspection frequen-
cies and the limitations of available data to make
risk-based distinctions among food products, food
producers, or hazards associated with foods.(6–12) Ap-
propriate tools and metrics are available for risk
ranking of biological hazards.(13) However, a com-
monly cited limitation in applying these tools is
the magnitude of uncertainty given the available
data. Uncertainty about dose-response relationships
looms large, for example, and epidemiologically-
based foodborne illness attribution data are not
available for the vast majority of pathogen-food
combinations.(14) For foodborne toxicants, Finkel(15)
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illustrates that generally accepted risk rankings (e.g.,
the risk from aflatoxin in peanut butter is greater
than the risk from Alar in apple juice) can become
indiscernible after taking uncertainty fully into ac-
count.

In the SPS setting, interest in risk-based in-
spection is not limited to food safety. Recently, the
idea also has caught on in animal and plant health.
However, Stark(16) cautions: “The rapid rate of ac-
ceptance of this core concept of risk-based [animal
health] surveillance has outpaced the development of
its theoretical and practical bases.” Williams(17) con-
siders the advantages, pitfalls, and ambiguities in tar-
geted sampling for animal disease surveillance. This
approach differs from stratified and other common
sampling approaches in that samples can be drawn
exclusively from targeted subpopulations, and infer-
ences rely on auxiliary epidemiologic information
used to estimate risk ratios and demographics, which
are themselves subject to uncertainty. Similar to
some of the implementation challenges witnessed in
food safety, an initial effort by the U.S. Department
of Agriculture Animal Plant and Health Inspec-
tion Service (USDA/APHIS) to introduce risk-based
sampling for imports of plants for planting was put
on temporary hold shortly after its introduction in
2012.(18) Conceptually, risk-based sampling presents
a challenge similar to financial portfolio optimiza-
tion, although the SPS domain is data-poor relative
to finance. Prattley(19) and Cannon(20) provide exam-
ples of the application of financial portfolio theory to
animal health surveillance. More generally, Cox(21)

has recommended application of portfolio optimiza-
tion methods to manage any portfolio of risks.

2. FINANCIAL PORTFOLIO OPTIMIZATION:
THEORY AND PERFORMANCE

Over 60 years ago, Markowitz(22) laid the foun-
dation for modern portfolio theory by deriving the
optimal rule for allocating wealth among assets in
a single-period setting when an investor bases deci-
sions only on the mean and variance of a portfolio’s
return. This involves calculating the weights (w) al-
located to N different assets in a portfolio to mini-
mize the variance of returns on the portfolio (σ 2

p) for
a given expected return (μp), or equivalently to max-
imize μp for a given σ 2

p. Such an investor chooses a
portfolio along the mean-variance efficient frontier
based on his or her target expected return (μ∗

p) or
degree of “risk aversion.” (The financial literature
typically equates risk with variance.(23)) The mean-

variance efficient frontier can be traced by solving:1
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multipliers.
To trace the efficient frontier under

Equation (2), μ∗
p is varied by increments. In the

single-period setting, the investor holds w fixed over
the period [t, t+1], after which the weights may be
adjusted.

The key insight of Markowitz’s theory is that
for a given expected return, variance is reduced by
holding a portfolio of imperfectly correlated assets.
It also provided a theoretically appealing expla-
nation for the observed behavior of investors who

1An alternative formulation of the classical MVO problem in-
cludes the tradeoff between mean and variance directly through
the objective function: Maxww′μ − λw′ ∑w, where λ � 0 is a
risk aversion parameter.

2Short sales are sales of an asset not owned by the seller who ex-
pects to buy it at a lower price at a future date and result in expo-
sure to potentially unlimited losses. Short sales enter the model
as negative weights. Brennan and Lo(24) show that in the absence
of estimation error, the probability that the mean-variance effi-
cient frontier contains negative weights tends to 1 as the num-
ber of assets in a portfolio increases without bound. This is in-
consistent with the capital asset pricing model (CAPM), under
which negative asset weights are impossible. The CAPM holds
that the portfolio in which each asset’s weight is proportional to
its total market capitalization lies on the mean-variance-efficient
frontier.
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seek diversification rather than simply maximizing
expected returns. At about the same time, Roy(25)

noted that an investor’s objective may be to minimize
the probability that the portfolio return is less than
a specified value. For the case where the specified
minimum return is the rate of return on a risk-free
asset (Rf),3 both methods lead to the same strategy
of maximizing the Sharpe ratio ((μp − Rf ) /σp),
resulting in the tangency portfolio:(26)

w = �−1μe

1′�−1μe

(3)

where: μe = μ − Rf 1.
Despite its theoretical appeal and simple, ele-

gant solution, mean-variance optimization (MVO)
has not gained wide acceptance in the investment
community.(27)4 Institutional pension portfolios,
for example, are anchored to a traditional 60/40
equity/bond benchmark structure.(29) Markowitz
himself followed a simple investment rule: “I split my
contributions 50/50 between bonds and equities.”(30)

Various cognitive, institutional, technological, and
other barriers to adoption of classical MVO and its
various extensions have been posited.(26,27,31–33) For
instance, Benartzi(33) found that in contrast to the
“rational, mean-variance optimizing investor,” indi-
vidual retirement investors tend to employ a naı̈ve
diversification strategy, the “1/N heuristic,” in which
contributions are simply divided evenly among the N
options offered. Finance practitioners also are con-
sidered suspicious of portfolios that are not naively
diversified.(34) As we will see shortly, however, the
practitioners’ suspicions have some empirical basis.

A fundamental problem underlying MVO is the
assumption of perfect information about μ and � for
a future time period (t+1) for the universe of assets
under consideration. In practice, the true, unknown
μt+1 and �t+1 are estimated by μ̂t and �̂t based on
information available at time t. Consequently, when
MVO is applied, the optimization problem that is ac-
tually solved is:

Minww′∑
t+1

w + w′
(

�̂t −
∑
t+1

)
w (4)

3Risk-free rate of return refers to zero variance, e.g., the rate of
return on a short-term government-issued security with zero risk
of default.

4More generally, Black and Litterman(28) remark that “few global
investment managers regularly allow quantitative models to play
a major role in their asset allocation decisions.”

s.t.w′μt+1 + w′ (μ̂t − μt+1) = μ∗
p, w′1 = 1

where (�̂t −∑
t+1) and (μ̂t − μt+1) are ex ante unob-

servable estimation errors.
MVO using sample-based parameter estimates

drawn from a cross-sectional time series of historical
returns assumes that the future is drawn from the
same multivariate distribution as the past. For
stationary processes like rolling dice, estimation
error due to finite samples can, in principle, be
rendered negligible. In nonstationary processes like
financial markets, however, there are regime shifts
(e.g., in macroeconomic conditions), transients (e.g.,
natural disasters and geopolitical disruptions), and
other complex dynamics. Consequently, arbitrarily
increasing the sample size does not arbitrarily im-
prove the precision of forecasts.(35) The spread and
evolution of infectious agents and invasive species in
the SPS setting are similarly nonstationary processes.
Indeed, there is a rapidly growing literature empha-
sizing and exploiting the parallels between financial
and ecological and infectious disease risks.(36–40)

MVO using sample-based inputs is notorious for
producing extreme, unstable asset weights5 and for
exhibiting poor out-of-sample performance.(42–47)

The optimization seeks to exploit the slightest appar-
ent differences among assets. For example, assume a
portfolio consists of five identical assets with monthly
returns (r) � Normal(1%, 4%), correlations of 50%,
and Rf = 0%. The true optimal w′ = [0.2, . . . , 0.2].6

A simple simulation shows, however, that if we
obtain μ̂ and �̂ from a sample of 120 months, the
weights calculated by the optimization are highly

5Extreme weights result in undiversified portfolios concentrated
in a small number of assets and may represent large leveraged
positive allocations and/or negative short allocations. Weights
that are unstable over time result in high transaction costs. In
principle, it is straightforward to incorporate future transaction
costs associated with adjusting to a new efficient frontier into
the objective function: Maxww′μ − λw′ ∑w – Ct, where Ct is
the transaction costs (including taxes) resulting from sales of
existing and purchases of new positions. However, portfolio op-
timization models with transaction costs remain a challenge ana-
lytically and empirically.(41) For example, predicting transaction
costs would require predictable price changes that in theory are
rapidly eliminated in informationally efficient markets. In prac-
tice, transaction costs may be limited indirectly by introducing a
constraint on asset turnover, the sum of the absolute differences
in weights between adjacent periods. In studies evaluating the
performance of portfolio allocation methods, turnover generally
serves as a proxy measure for transaction costs.

6In general, the 1/N portfolio is mean-variance efficient if μ ∝ �1.
This includes the case of identical assets.
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volatile about the mean of 0.2 (95% confidence
interval –0.47–0.87).

While the growing interest in the application of
portfolio optimization methods in the SPS domain
is a relatively recent development, the limitations of
modern portfolio theory have long been recognized
in the financial field. Frankfurter,(48) Hodges,(49) and
Dickenson(50) considered the sensitivity of MVO to
estimation error. Frankfurter(48) suggested that un-
der realistic conditions, portfolios selected accord-
ing to mean-variance criteria are no more likely
to be efficient than portfolios selected at random.
Dickenson(50) remarked that “the practical results . . .
are sufficiently poor for the investment analyst to be
forgiven for relying on his intuition.” Barry(51) cau-
tioned that due to nonstationary asset return distri-
butions, the amount of information available from a
given historical time series would be limited.

Merton(52) showed that under idealized condi-
tions, volatility can be measured precisely using high
frequency data, but very long time series would be
needed to estimate expected returns with precision.
Merton also cautioned that even if long time series
are available, it may not be reasonable to assume
stationary parameters over that long period. (Even
under stationary conditions, relatively new assets
by definition provide a short time series. Google,
for example, was founded in 1998.7) Michaud(27)

demonstrated that statistically equivalent portfolios
can have very different asset weights and argued that
given estimation uncertainty, the optimal portfolio
is not well-defined. For example, addressing pa-
rameter uncertainty by resampling, the distribution
of weights for a given asset in a portfolio can be
bimodal, with the asset frequently excluded from
the efficient portfolio.(53,54) Best(55) presented the-
oretical results showing that portfolio weights are
sensitive to small perturbations in the means, and
that the sensitivity of the weights increases with the
number of assets in a portfolio and the correlation
among assets. Chopra(56) showed that the relative
impact of estimation errors in means, variances,
and covariances depends on the position along the
mean-variance efficient frontier.

Michaud(27) also noted that in practice, an im-
portant reason for the instability of MVO solutions
is the inversion of an ill-conditioned covariance ma-
trix (e.g., due to high dimensionality and/or multi-
collinearity). A simple example illustrates. Assume

7Similarly, in the SPS domain, individual producers or exporting
nations may have a short track record.

a portfolio consists of three assets (A, B, and C) with
the following monthly returns (r) and correlations
(ρ): rA � Normal(1%, 2%), rB � Normal(1.05%,
2.5%), rC � Normal(1%, 3%), ρAB = 0.9, ρAC = 0.5,
and ρBC = 0.1. Let Rf = 0%. Under this scenario,
the solution for w′ = [13%, 52%, 35%], which ap-
pears reasonable. Now, holding all else constant, let
ρAC = 0.523. Under this scenario, the solution for w′
= [–2899%, 2089%, 910%]. This nonsensical com-
bination of extreme long and short positions is the
result of an ill-conditioned covariance matrix. Note
that � can be decomposed into matrices of eigenvec-
tors (vi) and eigenvalues (λi), and w is a linear com-
bination of N principal portfolios vi with weights that
scale as λ−1:

w ∝
N∑

i=1

1
λi

viv
′
iμe (5)

where:
∑N

i=1
1
λi

viv
′
i = �−1.

Consequently, MVO aligns the weights with the
principal portfolios linked with small eigenvalues.(57)

With the slight change of ρAC (0.5 to 0.523), the
smallest λ decreases by more than an order of mag-
nitude to 0.0016. As the eigenvectors associated with
the smallest eigenvalues are most sensitive to noise,
Michaud(27) dubbed this the “error maximization”
property of mean-variance optimizers.

Over the past 60 years, researchers have busily
developed new methods devoted to improving the
performance of portfolio optimization by reducing
the impact of estimation error and relaxing underly-
ing assumptions (e.g., no transaction costs or taxes,
unlimited liquidity, joint elliptically distributed re-
turns, constant volatility and linear dependencies, a
market with no memory).(26,58) For example, index
models imposed structure on the correlation matrix
and reduced the dimensionality of the optimization
problem.(59) (However, this involves a tradeoff be-
tween estimation error and specification error.(60))
Barry(51) recommended using diffuse Bayesian pri-
ors to address estimation error. Jobson(42,47) and
Jorion(43,61) proposed empirical Bayes shrinkage es-
timators. Black(28) proposed combining two priors,
shrinking the views of the investor toward an equilib-
rium asset pricing model, depending on the degree of
confidence in the investor’s views. Robust portfolio
allocation rules seek to minimize opportunity costs
under a “reasonable set” of market scenarios reflect-
ing parameter and model uncertainty.(62,63)

Among practitioners, a popular method for con-
trolling the effects of estimation error and instabil-
ity is to impose ad hoc constraints, such as turnover
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limits or minimum and maximum position limits on
individual assets or asset classes.(41,58,64) A common
constraint is to impose nonnegative weights (pro-
hibiting short sales). According to Brennan,(24) “in-
vestment professionals . . . have railed against mind-
less optimization for years, arguing that portfolio
weights obtained in this manner are ill-behaved and
must be constrained or otherwise post-processed.”
Ang(64) remarks, “[c]onstraints help because they
bring back unconstrained portfolio weights to eco-
nomically reasonable positions.” The common prac-
tice of relying on ad hoc constraints raises the ques-
tion of whether the optimized solution is driven by
subjective views of what the optimal assets weights
“should be” and has led some observers to suggest
that as used currently, MVO “has largely a market-
ing, rather than investment function”(65) and serves
as “window dressing.”(66)8

Over 30 years ago, Bloomfield(67) and Jobson(42)

observed that the naı̈ve 1/N portfolio strategy can
outperform MVO and other sophisticated allocation
strategies. More recently, DeMiguel(45) employed a
10-year rolling estimation window to compare the
out-of-sample performance of the naı̈ve 1/N strategy
to 14 portfolio optimization models across seven em-
pirical data sets of monthly returns. The models in-
clude classical MVO and its extensions like Bayesian
estimators and parameter restrictions, as well as as-
set pricing models, constrained portfolios, and com-
binations of portfolios intended to reduce the effects
of estimation error. The allocation strategies were
compared in terms of the Sharpe ratio, certainty-
equivalent return, and turnover. The results indi-
cate that despite decades of increased methodologi-
cal sophistication, none of the portfolio optimization
methods consistently had better out-of-sample per-
formance than the naı̈ve 1/N portfolio. Furthermore,
DeMiguel(45) estimated that for a portfolio contain-
ing 25–50 assets, the estimation window needed for
optimization methods to outperform the 1/N strat-
egy is approximately 3,000–6,000 months (250–500
years).

It is an empirical question whether the forecast-
ing error inherent in portfolio optimization methods
outweighs the effects of ignoring information under
simple allocation rules such as 1/N. The balance is
situational, depending on the assets under consid-

8Similarly, minimum and maximum prescribed inspection fre-
quencies may constrain risk-based sampling in the SPS setting,
and complex risk-ranking algorithms may convey an impression
of rigor despite weak underlying data.

Table I. 3×3 Factorial for 27 Simulated Producers

Factor High Med Low

Mean lot prevalence (μ) 0.01 0.005 0.001
CV lot prev. (σ /μ) 2 1 0.5
Volume (L, lots/year) 100,000 10,000 1,000

eration, the investment period, the degree of risk
aversion, and other factors. Assuming markets are
reasonably efficient, however, it seems likely that if
an asset allocation strategy were superior in practice,
it would have overtaken competing strategies in
60 years. Once the assumption of perfect informa-
tion about the distribution of future states of the
world is relaxed, there is little reason to expect that
optimization is an optimal strategy.(68)

3. SIMULATION OF LOT INSPECTION

The implications of the limitations of portfolio
optimization for risk-based sampling are illustrated
by a simple simulation model of lot inspection for a
small, heterogeneous group of producers. Assume a
heterogeneous group of 27 producers characterized
by three factors with three levels (Table I). Let i
= 1, . . . , 27 producers; j = 1, . . . , 20 years. For each
producer, the prevalence of contaminated lots (p)
varies independently year to year following a beta
distribution:9

pi ∼ Beta(μi , σi ), (6)

where: σi = cvi ∗ μi and cv is the coefficient of
variation (σ /μ).

While prevalence has to be estimated, producer
volume (Li, lots/year) is considered known and
fixed. Total volume over all 27 producers is 999,000
lots/year. Assume a budget that allows lot inspec-
tion (I) of approximately 1% of the total annual
volume (

∑
i j Ii � 9,990/year). Let the probability of

detecting a contaminated lot (pdetxn) = 78.5%. (This
would hold if the within-lot prevalence is 5% and
the number of samples per lot is 30. In that case,
the budget would permit collection and analysis of
approximately 299,700 samples per year.10)

9Here, we define the beta distribution in terms of the mean (μ)
and variance (σ 2). It is more common to parameterize the beta
distribution in terms of α and β with α = μ2(1–μ)/σ 2 and β =
α(1–μ)/μ.

10In comparison, the U.S. Department of Agriculture Food
Safety and Inspection Service(69) analyzes approximately 30,000
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The simulation of contaminated lots (c), contam-
inated lots included in the inspection sample (ci), and
contaminated lots detected upon inspection (x) pro-
ceeds as follows:

no. contaminated lots (ci j ) ∼ Binomial (Li ,pi j )

no. contaminated lot inspected (cii j )

∼Hypergeometric (Ii j , ci j ,Li )

no. contaminated lots detected (xi j )

∼ Binomial (cii j ,pdetxn) (7)

Under a constrained, “risk-based” optimization
of lot inspection, we start in the first year with an
equal number of inspections to establish a baseline
estimate of prevalence for each producer. There-
after, the annual frequency of lot inspection for each
producer (Iij) is at least one and no more than their
production volume, but otherwise sampling is pro-
portional to the product of volume (Li) and the es-
timated prevalence of contaminated lots ( p̂ij). The
prevalence estimate is updated each year based on
the accumulated data:

Optimized Allocation : Ii j ∝ Li ∗ p̂i j (8)

s.t. Ii1= 9, 990/27 = 370; 1≤ Ii j ≤ Li for j= 2, . . . , 20

where: p̂i j =
∑t−1

j=1 xi∑t−1
j=1 Ii

.

Under a simpler allocation rule, we ignore infor-
mation about prevalence and sample lots for inspec-
tion proportional to volume.

Simplified Allocation : Ii ∝ Li (9)

Note that under simple random sampling, the
probability of inspecting a lot from a producer is
proportional to its production volume. If production
volume were unknown, the simplified allocation rule
could be approached by random sampling of lots for
inspection.

Two simulation scenarios are considered. Under
the first scenario, the system is assumed station-
ary for 20 years. Under the second scenario, we
introduce transients (e.g., outbreaks or extreme
contamination events) into an otherwise stationary
process. This scenario assumes a producer’s annual
probability of a transient is 5% so that each producer
is expected to incur one transient over 20 years. The
transients are assumed to increase lot prevalence

samples per year for Salmonella across the entire raw meat and
poultry sector.

Fig. 1. Optimized allocation distribution for Producer 3 (high
volume, high prevalence, low CV) year 20.

without changing the probability of detecting a con-
taminated lot.11 Simulations were performed with
Latin hypercube sampling using Palisades @Risk,
Ver. 5.7.1, an add-on to Microsoft Excel.

3.1. Simulation Results

3.1.1. Scenario 1

Assuming stationary parameters, the optimized
“risk-based” sampling frequencies assigned to pro-
ducers remain highly unstable after 20 years. For
example, Fig. 1 presents the results for Producer
3 (high volume, high prevalence, low cv). After
20 years, the optimization allocates a bimodal distri-
bution of inspections, essentially indicating that the
producer should either be ignored or sampled with a
high frequency.

Fig. 2 summarizes the optimized allocation distri-
butions for the three high-volume, high-prevalence
producers (Producers 1–3). The risk-based sampling
weights remain highly unstable after 20 years and far
from optimal. Whether the simulated mean under-
or overestimates the true optimal allocation depends
on the cv.

Even if the simulated baseline sampling period is
extended to 10 years, the risk-based sampling weights
remain highly unstable at year 20 under stationarity.
For example, with a 10-year baseline, the simulated
95% interval of inspections at year 20 for Producer 1
was 29–184% of the true optimum. Just as unstable

11This assumption might hold, for example, if contamination
becomes more widespread among sites (e.g., orchards) that
supply raw materials (e.g., fruit) but not more prevalent within
lots sourced from contaminated sites after pre- and posthar-
vest control measures, which could include quarantine of highly
contaminated sites.
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Fig. 2. Simulated mean and 90% confidence in-
tervals of optimized allocation distributions for
high-prevalence, high-volume producers year 20.

Fig. 3. Mean number of contaminated lots detected over time by
optimized and volume-based allocations under stationarity.

asset weights increase financial transaction costs and
reduce net portfolio returns, we would expect unsta-
ble sampling weights to increase costs and diminish
cost effectiveness of lot inspection. Unstable weights
also could result in churning reputation damages as
different producers are targeted over time.

Fig. 3 compares the performance of the optimiza-
tion rule versus allocating proportional to volume
alone. It suggests that although the optimization is
unstable, it is expected to outperform simple volume-
based allocation over time. This is analogous to the
finding that financial portfolio returns can be less sen-
sitive to estimation error than the underlying asset
weights.(55) Recall, however, that this simulation sce-

nario implausibly assumes the process is stationary
over 20 years.

3.1.2. Scenario 2

Fig. 4 shows that with the introduction of infre-
quent transients into an otherwise stationary process,
the expected performance of the allocation rules
rapidly becomes indistinguishable as the lot preva-
lence given a transient (transient intensity) increases.

It is important to note that measuring perfor-
mance based on the number of lots rejected per
year, like classical MVO, assumes a single-period
setting. However, rather than passively recording
spiking numbers and adjusting the sampling weights
at the end of a period, SPS inspection ideally also
serves to detect ongoing extreme events, determine
their cause, and take timely corrective action. This is
not only relevant to food safety but also to invasive
species. Once introduced into a new environment,
invasive species may become established and cause
continuing damages beyond the initial introduction
event.

To consider which sampling allocation rule is
more likely to detect the occurrence of a transient,
Fig. 5 presents the cumulative distribution of the ra-
tio of contaminated lots detected for the two schemes
given occurrence of a transient (xopt/xvol|transient).
We see that the optimization scheme is like a bat-
ter who swings for the fences and strikes out a lot.
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Fig. 4. Mean number of contaminated lots detected over time by optimized and volume-based allocations with producer’s annual probability
of transient = 5%.

Fig. 5. Cumulative distribution of the ratio
of contaminated lots detected under opti-
mization and volume-based allocation given
occurrence of a transient.

The break-even ratio of 1 exceeds the 70th percentile
of the distribution, and the optimization scheme fre-
quently fails to detect any contaminated lots during
transient events due to the virtual exclusion of some
producers from inspection. While the risk-based sam-
pling weights are volatile, reacting to each new chunk

of data, the simple volume-based sampling weights
are patiently stable over time. To make another
sports analogy, the simple scheme is like experienced
soccer players who space themselves out over the
field, rather than pee wee leaguers who merrily chase
the ball as a swarm.
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Of course, these simulations are based on hypo-
thetical distributions and scenarios and are only in-
tended to be illustrative. But the results suggest that
complex optimization efforts do not consistently out-
perform apparently naı̈ve allocation strategies. This
mirrors the empirical findings in the financial port-
folio literature, which is and likely will remain a far
more data-rich environment than the SPS setting.

4. CONCLUSION

This article illustrates that seeking to optimize
risk-based sampling can be a suboptimal sampling
strategy. More generally, Gigerenzer(70) finds that
heuristic decision making that ignores some infor-
mation can lead to more accurate judgments than
weighting and incorporating all available informa-
tion, for instance, for conditions characterized by low
predictability and small samples. Further, it is worth
noting that all samples are small if the dimension of
the problem is sufficiently high (e.g., rank ordering
the risk of all producers of all foods across all haz-
ards). But if pursuing optimization can be subopti-
mal under uncertainty, it does not follow that follow-
ing simple rules is costless or that any simple heuris-
tic will perform better than optimization methods.
For example, an investor could simply allocate her
wealth among assets based on offers in her email
spam folder, or an SPS agency could allocate inspec-
tion resources based on the latest widely publicized
outbreak or contamination event. In finance, the sim-
ple 1/N investment heuristic often performs well in
practice because it has built-in buy low/sell high char-
acteristics, a contrarian strategy that benefits from re-
version to the mean. Equal weighting also guaran-
tees that the best performing asset remains in the
portfolio while eliminating exposure to risky short
positions. Recently, Pflug(32) demonstrates that opti-
mized portfolios converge to the uniform portfolio as
uncertainty increases.

This finding is intuitive. If uncertainty about
asset returns is sufficiently large, we would not reject
the hypothesis that all the assets arise from the same
population. In this instance, applying MVO results
in equal weighting, and diversification benefits are
achieved if the assets are imperfectly correlated.
Similarly, in the SPS setting, if there is sufficient
uncertainty (taking into account the number of com-
parisons), we would not reject the hypothesis that all
producers have the same prevalence of contaminated
lots. In such a case, sampling resources should be
allocated according to risk-related attributes over

which producers are distinguishable (e.g., volume)
without regard to prevalence. Alternatively, if the
risks associated with exposure pathways are poorly
understood (including future volumes), then it will
be difficult for risk-weighted sampling to consistently
perform better out sample than simple random
sampling. This conclusion seems so self-evident as
to be trivial. Nonetheless, enthusiasm for risk-based
sampling using ever more complicated optimization
techniques does not appear to be waning.

In a widely publicized speech on financial regu-
lation in the wake of the financial crisis that began
in 2007, Haldane(68) advocated the use of simple reg-
ulatory decision-making rules under uncertainty but
cautioned that this places a heavy reliance on the
judgment of the decisionmaker to pick appropriate
heuristics. Exercising judgment under uncertainty is
taken for granted in private finance. However, re-
lying on the judgment of public decisionmakers as-
sumes a level of deference that is not always granted.
And this may explain, at least in part, the persistent
appeal of risk-based sampling in the SPS domain.

DISCLAIMER

The opinions expressed herein are the views
of the author and do not necessarily reflect the
official policy or position of the U.S. Department of
Agriculture. Reference herein to any specific com-
mercial products, process, or service by trade name,
trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, rec-
ommendation, or favoring by the U.S. government.
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